|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM296059285 |
003 |
DE-627 |
005 |
20231225085019.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201900651
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0986.xml
|
035 |
|
|
|a (DE-627)NLM296059285
|
035 |
|
|
|a (NLM)30985032
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yu, Zhi-Long
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Superelastic Hard Carbon Nanofiber Aerogels
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Superelastic carbon aerogels have been widely explored by graphitic carbons and soft carbons. These soft aerogels usually have delicate microstructures with good fatigue resistance but ultralow strength. Hard carbon aerogels show great advantages in mechanical strength and structural stability due to the sp3 -C-induced turbostratic "house-of-cards" structure. However, it is still a challenge to fabricate superelastic hard carbon-based aerogels. Through rational nanofibrous structural design, the traditional rigid phenolic resin can be converted into superelastic hard carbon aerogels. The hard carbon nanofibers and abundant welded junctions endow the hard carbon aerogels with robust and stable mechanical performance, including superelasticity, high strength, extremely fast recovery speed (860 mm s-1 ), low energy-loss coefficient (<0.16), long cycle lifespan, and heat/cold-endurance. These emerging hard carbon nanofiber aerogels hold a great promise in the application of piezoresistive stress sensors with high stability and wide detection range (50 kPa), as well as stretchable or bendable conductors
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a hard carbon aerogels
|
650 |
|
4 |
|a high strength
|
650 |
|
4 |
|a nanofibrous networks
|
650 |
|
4 |
|a piezoresistive sensors
|
650 |
|
4 |
|a superelasticity
|
700 |
1 |
|
|a Qin, Bing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Zhi-Yuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Jin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Si-Cheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Hao-Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Han
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Yin-Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Heng-An
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Shu-Hong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 23 vom: 11. Juni, Seite e1900651
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:23
|g day:11
|g month:06
|g pages:e1900651
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201900651
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 23
|b 11
|c 06
|h e1900651
|