Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 70(2019), 18 vom: 24. Sept., Seite 4849-4864
1. Verfasser: Gao, Jingyang (VerfasserIn)
Weitere Verfasser: Wang, Songfeng, Zhou, Zijian, Wang, Shiwei, Dong, Chaopei, Mu, Cong, Song, Yunxia, Ma, Peipei, Li, Chengcheng, Wang, Zhao, He, Kewei, Han, Chunyan, Chen, Jiafa, Yu, Haidong, Wu, Jianyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Calcium signaling GWAS candidate genes high-density SNP markers high-temperature stress linkage mapping maize seed-set thermotolerance
Beschreibung
Zusammenfassung:© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
It is predicted that high-temperature stress will increasingly affect crop yields worldwide as a result of climate change. In order to determine the genetic basis of thermotolerance of seed-set in maize under field conditions, we performed mapping of quantitative trait loci (QTLs) in a recombinant inbred line (RIL) population using a collection of 8329 specifically developed high-density single-nucleotide polymorphism (SNP) markers, combined with a genome-wide association study (GWAS) of 261 diverse maize lines using 259 973 SNPs. In total, four QTLs and 17 genes associated with 42 SNPs related to thermotolerance of seed-set were identified. Among them, four candidate genes were found in both linkage mapping and GWAS. Thermotolerance of seed-set was increased significantly in near-isogenic lines (NILs) that incorporated the four candidate genes in a susceptible parent background. The expression profiles of two of the four genes showed that they were induced by high temperatures in the maize tassel in a tolerant parent background. Our results indicate that thermotolerance of maize seed-set is regulated by multiple genes each of which has minor effects, with calcium signaling playing a central role. The genes identified may be exploited in breeding programs to improve seed-set and yield of maize under heat stress
Beschreibung:Date Completed 27.07.2020
Date Revised 27.07.2020
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erz171