High ISO JPEG Image Denoising by Deep Fusion of Collaborative and Convolutional Filtering

Capturing images at high ISO modes will introduce much realistic noise, which is difficult to be removed by traditional denoising methods. In this paper, we propose a novel denoising method for high ISO JPEG images via deep fusion of collaborative and convolutional filtering. Collaborative filtering...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 9 vom: 09. Sept., Seite 4339-4353
1. Verfasser: Yue, Huanjing (VerfasserIn)
Weitere Verfasser: Liu, Jianjun, Yang, Jingyu, Nguyen, Truong Q, Wu, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM295910372
003 DE-627
005 20231225084705.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2909805  |2 doi 
028 5 2 |a pubmed24n0986.xml 
035 |a (DE-627)NLM295910372 
035 |a (NLM)30969923 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yue, Huanjing  |e verfasserin  |4 aut 
245 1 0 |a High ISO JPEG Image Denoising by Deep Fusion of Collaborative and Convolutional Filtering 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.07.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Capturing images at high ISO modes will introduce much realistic noise, which is difficult to be removed by traditional denoising methods. In this paper, we propose a novel denoising method for high ISO JPEG images via deep fusion of collaborative and convolutional filtering. Collaborative filtering explores the non-local similarity of natural images, while convolutional filtering takes advantage of the large capacity of convolutional neural networks (CNNs) to infer noise from noisy images. We observe that the noise variance map of a high ISO JPEG image is spatial-dependent and has a Bayer-like pattern. Therefore, we introduce the Bayer pattern prior in our noise estimation and collaborative filtering stages. Since collaborative filtering is good at recovering repeatable structures and convolutional filtering is good at recovering irregular patterns and removing noise in flat regions, we propose to fuse the strengths of the two methods via deep CNN. The experimental results demonstrate that our method outperforms the state-of-the-art realistic noise removal methods for a wide variety of testing images in both subjective and objective measurements. In addition, we construct a dataset with noisy and clean image pairs for high ISO JPEG images to facilitate research on this topic 
650 4 |a Journal Article 
700 1 |a Liu, Jianjun  |e verfasserin  |4 aut 
700 1 |a Yang, Jingyu  |e verfasserin  |4 aut 
700 1 |a Nguyen, Truong Q  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 9 vom: 09. Sept., Seite 4339-4353  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:9  |g day:09  |g month:09  |g pages:4339-4353 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2909805  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 9  |b 09  |c 09  |h 4339-4353