HDDA : DataSifter: statistical obfuscation of electronic health records and other sensitive datasets

There are no practical and effective mechanisms to share high-dimensional data including sensitive information in various fields like health financial intelligence or socioeconomics without compromising either the utility of the data or exposing private personal or secure organizational information....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation. - 1999. - 89(2018), 2 vom: 08., Seite 249-271
1. Verfasser: Marino, Simeone (VerfasserIn)
Weitere Verfasser: Zhou, Nina, Zhao, Yi, Wang, Lu, Wu, Qiucheng, Dinov, Ivo D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of statistical computation and simulation
Schlagworte:Journal Article Big Data Data sharing information protection personal privacy statistical method
LEADER 01000caa a22002652 4500
001 NLM295841567
003 DE-627
005 20240922233024.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1080/00949655.2018.1545228  |2 doi 
028 5 2 |a pubmed24n1543.xml 
035 |a (DE-627)NLM295841567 
035 |a (NLM)30962669 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Marino, Simeone  |e verfasserin  |4 aut 
245 1 0 |a HDDA  |b DataSifter: statistical obfuscation of electronic health records and other sensitive datasets 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a There are no practical and effective mechanisms to share high-dimensional data including sensitive information in various fields like health financial intelligence or socioeconomics without compromising either the utility of the data or exposing private personal or secure organizational information. Excessive scrambling or encoding of the information makes it less useful for modelling or analytical processing. Insufficient preprocessing may compromise sensitive information and introduce a substantial risk for re-identification of individuals by various stratification techniques. To address this problem, we developed a novel statistical obfuscation method (DataSifter) for on-the-fly de-identification of structured and unstructured sensitive high-dimensional data such as clinical data from electronic health records (EHR). DataSifter provides complete administrative control over the balance between risk of data re-identification and preservation of the data information. Simulation results suggest that DataSifter can provide privacy protection while maintaining data utility for different types of outcomes of interest. The application of DataSifter on a large autism dataset provides a realistic demonstration of its promise practical applications 
650 4 |a Journal Article 
650 4 |a Big Data 
650 4 |a Data sharing 
650 4 |a information protection 
650 4 |a personal privacy 
650 4 |a statistical method 
700 1 |a Zhou, Nina  |e verfasserin  |4 aut 
700 1 |a Zhao, Yi  |e verfasserin  |4 aut 
700 1 |a Wang, Lu  |e verfasserin  |4 aut 
700 1 |a Wu, Qiucheng  |e verfasserin  |4 aut 
700 1 |a Dinov, Ivo D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of statistical computation and simulation  |d 1999  |g 89(2018), 2 vom: 08., Seite 249-271  |w (DE-627)NLM098160486  |x 0094-9655  |7 nnns 
773 1 8 |g volume:89  |g year:2018  |g number:2  |g day:08  |g pages:249-271 
856 4 0 |u http://dx.doi.org/10.1080/00949655.2018.1545228  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 89  |j 2018  |e 2  |b 08  |h 249-271