Enhance Visual Recognition under Adverse Conditions via Deep Networks

Visual recognition under adverse conditions is a very important and challenging problem of high practical value, due to the ubiquitous existence of quality distortions during image acquisition, transmission, or storage. While deep neural networks have been extensively exploited in the techniques of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 01. Apr.
1. Verfasser: Liu, Ding (VerfasserIn)
Weitere Verfasser: Cheng, Bowen, Wang, Zhangyang, Zhang, Haichao, Huang, Thomas S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM295683953
003 DE-627
005 20240229162155.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2908802  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM295683953 
035 |a (NLM)30946668 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Ding  |e verfasserin  |4 aut 
245 1 0 |a Enhance Visual Recognition under Adverse Conditions via Deep Networks 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Visual recognition under adverse conditions is a very important and challenging problem of high practical value, due to the ubiquitous existence of quality distortions during image acquisition, transmission, or storage. While deep neural networks have been extensively exploited in the techniques of low-quality image restoration and high-quality image recognition tasks respectively, few studies have been done on the important problem of recognition from very low-quality images. This paper proposes a deep learning based framework for improving the performance of image and video recognition models under adverse conditions, using robust adverse pre-training or its aggressive variant. The robust adverse pre-training algorithms leverage the power of pre-training and generalizes conventional unsupervised pre-training and data augmentation methods. We further develop a transfer learning approach to cope with real-world datasets of unknown adverse conditions. The proposed framework is comprehensively evaluated on a number of image and video recognition benchmarks, and obtains significant performance improvements under various single or mixed adverse conditions. Our visualization and analysis further add to the explainability of results 
650 4 |a Journal Article 
700 1 |a Cheng, Bowen  |e verfasserin  |4 aut 
700 1 |a Wang, Zhangyang  |e verfasserin  |4 aut 
700 1 |a Zhang, Haichao  |e verfasserin  |4 aut 
700 1 |a Huang, Thomas S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 01. Apr.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:01  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2908802  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 01  |c 04