Mass Transport in Coacervate-Based Protocell Coated with Fatty Acid under Nonequilibrium Conditions

Construction of protocell models from prebiotically plausible components to mimic the basic features or functions of living cells is still a challenge. In this work, we prepare a hybrid protocell model by coating sodium oleate on the coacervate droplet constituted by poly(l-lysine) and oligonucleoti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 16 vom: 23. Apr., Seite 5587-5593
1. Verfasser: Jing, Hairong (VerfasserIn)
Weitere Verfasser: Lin, Ya'nan, Chang, Haojing, Bai, Qingwen, Liang, Dehai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Fatty Acids Oleic Acid 2UMI9U37CP osteum 399SL044HN
Beschreibung
Zusammenfassung:Construction of protocell models from prebiotically plausible components to mimic the basic features or functions of living cells is still a challenge. In this work, we prepare a hybrid protocell model by coating sodium oleate on the coacervate droplet constituted by poly(l-lysine) and oligonucleotide and investigate the transport of different molecules under electric field. Results show that sodium oleate forms a layered viscoelastic membrane on the droplet surface, which is selectively permeable to small, polar molecules, such as oligolysine. As the droplet is stimulated at 10 V cm-1, the oleate membrane slips along the direction of electric field while maintaining its integrity. Most of the molecules are still excluded under such conditions. As repetitive cycles of vacuolization occur at 20 V cm-1, all molecules are internalized and sequestrated in the droplet through their specific pathways except enzyme, which anchors in the oleate membrane and is immune to electric field. Cascade enzymatic reactions are then carried out, and the product generated from the membrane exhibits a time-dependent concentration gradient across the droplet. Our work makes a step toward the nonequilibrium functionalization of synthetic protocells capable of biomimetic operations
Beschreibung:Date Completed 28.07.2020
Date Revised 28.07.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00470