An Electron-Balance Based Approach to Predict the Decreasing Denitrification Potential of an Aquifer

© 2019, National Ground Water Association.

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1979. - 57(2019), 6 vom: 15. Nov., Seite 925-939
1. Verfasser: Loschko, Matthias (VerfasserIn)
Weitere Verfasser: Wöhling, Thomas, Rudolph, David L, Cirpka, Olaf A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water Pollutants, Chemical
LEADER 01000naa a22002652 4500
001 NLM295561386
003 DE-627
005 20231225083930.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/gwat.12876  |2 doi 
028 5 2 |a pubmed24n0985.xml 
035 |a (DE-627)NLM295561386 
035 |a (NLM)30934134 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Loschko, Matthias  |e verfasserin  |4 aut 
245 1 3 |a An Electron-Balance Based Approach to Predict the Decreasing Denitrification Potential of an Aquifer 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2019 
500 |a Date Revised 08.01.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019, National Ground Water Association. 
520 |a Numerical models for reactive transport can be used to estimate the breakthrough of a contaminant in a pumping well or at other receptors. However, as natural aquifers are highly heterogeneous with unknown spatial details, reactive transport predictions on the aquifer scale require a stochastic framework for uncertainty analysis. The high computational demand of spatially explicit reactive-transport models hampers such analysis, thus motivating the search for simplified estimation tools. We suggest performing an electron balance between the reactants in the infiltrating solution and in the aquifer matrix to obtain the hypothetical time of dissolved-reactant breakthrough at a receptor if the reaction with the matrix was instantaneous. This time we denote as the advective breakthrough time for instantaneous reaction (τinst ). It depends on the amount of the reaction partner present in the matrix, the mass flux of the dissolved reactant, and the stoichiometry. While the shape of the reactive-species breakthrough curve depends on various kinetic parameters, the overall timing scales with τinst . We calculate the latter by particle tracking. The effort of computing τinst is so low that stochastic calculations become feasible. We apply the concept to a two-dimensional test case of aerobic respiration and denitrification. A detailed spatially explicit reactive-transport model includes microbial dynamics. Scaling the time of local breakthrough curves observed at individual points by τinst decreased the variability of electron-donor breakthrough curves significantly. We conclude that the advective breakthrough time for instantaneous reaction is efficient in estimating the time over which an aquifer retains its degradation potential 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Water Pollutants, Chemical  |2 NLM 
700 1 |a Wöhling, Thomas  |e verfasserin  |4 aut 
700 1 |a Rudolph, David L  |e verfasserin  |4 aut 
700 1 |a Cirpka, Olaf A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1979  |g 57(2019), 6 vom: 15. Nov., Seite 925-939  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnns 
773 1 8 |g volume:57  |g year:2019  |g number:6  |g day:15  |g month:11  |g pages:925-939 
856 4 0 |u http://dx.doi.org/10.1111/gwat.12876  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2019  |e 6  |b 15  |c 11  |h 925-939