Spatial-Temporal Attention-Aware Learning for Video-Based Person Re-Identification

In this paper, we present a spatial-temporal attention-aware learning (STAL) method for video-based person re-identification. Most existing person re-identification methods aggregate image features identically to represent persons, which are extracted from the same receptive field across video frame...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 9 vom: 01. Sept., Seite 4192-4205
1. Verfasser: Chen, Guangyi (VerfasserIn)
Weitere Verfasser: Lu, Jiwen, Yang, Ming, Zhou, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we present a spatial-temporal attention-aware learning (STAL) method for video-based person re-identification. Most existing person re-identification methods aggregate image features identically to represent persons, which are extracted from the same receptive field across video frames. However, the image quality may be varying for different spatial regions and changing over time, which shall contribute to person representation and matching adaptively. Our STAL method aims to attend to the salient parts of persons in videos jointly in both spatial and temporal domains. To achieve this, we slice the video into multiple spatial-temporal units which preserve the body structure of a person and develop a joint spatial-temporal attention model to learn the quality scores of these units. We evaluate the proposed method on three challenging datasets including iLIDS-VID, PRID-2011, and the large-scale MARS dataset, and consistently improve the rank-1 accuracy by a large margin of 5.7%, 0.9%, and 6.6% respectively, in comparison with the state-of-the-art methods
Beschreibung:Date Revised 03.07.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2019.2908062