Tensor Graphical Model : Non-Convex Optimization and Statistical Inference

We consider the estimation and inference of graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 8 vom: 01. Aug., Seite 2024-2037
1. Verfasser: Lyu, Xiang (VerfasserIn)
Weitere Verfasser: Sun, Will Wei, Wang, Zhaoran, Liu, Han, Yang, Jian, Cheng, Guang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM295549009
003 DE-627
005 20231225083915.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2907679  |2 doi 
028 5 2 |a pubmed24n0985.xml 
035 |a (DE-627)NLM295549009 
035 |a (NLM)30932830 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lyu, Xiang  |e verfasserin  |4 aut 
245 1 0 |a Tensor Graphical Model  |b Non-Convex Optimization and Statistical Inference 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2021 
500 |a Date Revised 21.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We consider the estimation and inference of graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. A critical challenge in the estimation and inference of this model is the fact that its penalized maximum likelihood estimation involves minimizing a non-convex objective function. To address it, this paper makes two contributions: (i) In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with an optimal statistical rate of convergence. (ii) We propose a de-biased statistical inference procedure for testing hypotheses on the true support of the sparse precision matrices, and employ it for testing a growing number of hypothesis with false discovery rate (FDR) control. The asymptotic normality of our test statistic and the consistency of FDR control procedure are established. Our theoretical results are backed up by thorough numerical studies and our real applications on neuroimaging studies of Autism spectrum disorder and users' advertising click analysis bring new scientific findings and business insights. The proposed methods are encoded into a publicly available R package Tlasso 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Sun, Will Wei  |e verfasserin  |4 aut 
700 1 |a Wang, Zhaoran  |e verfasserin  |4 aut 
700 1 |a Liu, Han  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Cheng, Guang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 8 vom: 01. Aug., Seite 2024-2037  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:8  |g day:01  |g month:08  |g pages:2024-2037 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2907679  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 8  |b 01  |c 08  |h 2024-2037