Towards Efficient U-Nets : A Coupled and Quantized Approach

In this paper, we propose to couple stacked U-Nets for efficient visual landmark localization. The key idea is to globally reuse features of the same semantic meanings across the stacked U-Nets. The feature reuse makes each U-Net light-weighted. Specially, we propose an order- K coupling design to t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 8 vom: 01. Aug., Seite 2038-2050
1. Verfasser: Tang, Zhiqiang (VerfasserIn)
Weitere Verfasser: Peng, Xi, Li, Kang, Metaxas, Dimitris N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM295548991
003 DE-627
005 20250225035139.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2907634  |2 doi 
028 5 2 |a pubmed25n0985.xml 
035 |a (DE-627)NLM295548991 
035 |a (NLM)30932829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Zhiqiang  |e verfasserin  |4 aut 
245 1 0 |a Towards Efficient U-Nets  |b A Coupled and Quantized Approach 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.02.2021 
500 |a Date Revised 12.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose to couple stacked U-Nets for efficient visual landmark localization. The key idea is to globally reuse features of the same semantic meanings across the stacked U-Nets. The feature reuse makes each U-Net light-weighted. Specially, we propose an order- K coupling design to trim off long-distance shortcuts, together with an iterative refinement and memory sharing mechanism. To further improve the efficiency, we quantize the parameters, intermediate features, and gradients of the coupled U-Nets to low bit-width numbers. We validate our approach in two tasks: human pose estimation and facial landmark localization. The results show that our approach achieves state-of-the-art localization accuracy but using  ∼ 70% fewer parameters,  ∼ 30% less inference time,  ∼ 98% less model size, and saving  ∼ 75% training memory compared with benchmark localizers 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
700 1 |a Li, Kang  |e verfasserin  |4 aut 
700 1 |a Metaxas, Dimitris N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 8 vom: 01. Aug., Seite 2038-2050  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:8  |g day:01  |g month:08  |g pages:2038-2050 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2907634  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 8  |b 01  |c 08  |h 2038-2050