|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM29554337X |
003 |
DE-627 |
005 |
20231225083908.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201806326
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0985.xml
|
035 |
|
|
|a (DE-627)NLM29554337X
|
035 |
|
|
|a (NLM)30932263
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sun, Hongming
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.01.2020
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Electrochemical water splitting is a promising technology for sustainable conversion, storage, and transport of hydrogen energy. Searching for earth-abundant hydrogen/oxygen evolution reaction (HER/OER) electrocatalysts with high activity and durability to replace noble-metal-based catalysts plays paramount importance in the scalable application of water electrolysis. A freestanding electrode architecture is highly attractive as compared to the conventional coated powdery form because of enhanced kinetics and stability. Herein, recent progress in developing transition-metal-based HER/OER electrocatalytic materials is reviewed with selected examples of chalcogenides, phosphides, carbides, nitrides, alloys, phosphates, oxides, hydroxides, and oxyhydroxides. Focusing on self-supported electrodes, the latest advances in their structural design, controllable synthesis, mechanistic understanding, and strategies for performance enhancement are presented. Remaining challenges and future perspectives for the further development of self-supported electrocatalysts are also discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a electrocatalysis
|
650 |
|
4 |
|a hydrogen evolution
|
650 |
|
4 |
|a oxygen evolution
|
650 |
|
4 |
|a self-supported electrodes
|
650 |
|
4 |
|a transition metals
|
700 |
1 |
|
|a Yan, Zhenhua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Fangming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Wence
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Fangyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 3 vom: 07. Jan., Seite e1806326
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:3
|g day:07
|g month:01
|g pages:e1806326
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201806326
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 3
|b 07
|c 01
|h e1806326
|