Guanidinium and Mixed Cesium-Guanidinium Tin(II) Bromides : Effects of Quantum Confinement and Out-of-Plane Octahedral Tilting

Hybrid organic-inorganic main-group metal halide compounds are the subject of intense research owing to their unique optoelectronic characteristics. In this work, we report the synthesis, structure, and electronic and optical properties of a family of hybrid tin (II) bromide compounds comprising gua...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 31(2019), 6 vom: 26. März, Seite 2121-2129
1. Verfasser: Nazarenko, Olga (VerfasserIn)
Weitere Verfasser: Kotyrba, Martin R, Yakunin, Sergii, Wörle, Michael, Benin, Bogdan M, Rainò, Gabriele, Krumeich, Frank, Kepenekian, Mikaël, Even, Jacky, Katan, Claudine, Kovalenko, Maksym V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Hybrid organic-inorganic main-group metal halide compounds are the subject of intense research owing to their unique optoelectronic characteristics. In this work, we report the synthesis, structure, and electronic and optical properties of a family of hybrid tin (II) bromide compounds comprising guanidinium [G, C(NH2)3 +] and mixed cesium-guanidinium cations: G2SnBr4, CsGSnBr4, and Cs2GSn2Br7. G2SnBr4 has a one-dimensional structure that consists of chains of corner-sharing [SnBr5]2- square pyramids and G cations situated in between the chains. Cs+ exhibits a pronounced structure-directing effect where a mixture of Cs+ and G cations forms mono- and bilayered two-dimensional perovskites: CsGSnBr4 and Cs2GSn2Br7. Furthermore, the flat shapes of the guanidinium cations induce anisotropic out-of-plane tilts of the [SnBr6]4- octahedra in the CsGSnBr4 and Cs2GSn2Br7 compounds. In G2SnBr4, the Sn lone pair is highly stereoactive and favors non-octahedral, that is, square pyramidal coordination of Sn(II). G2SnBr4 exhibits bright broad-band emission from self-trapped excitonic states, owing to its soft lattice and electronic localization. This emission in G2SnBr4 is characterized by a photoluminescence (PL) quantum yield of 2% at room temperature (RT; 75 ± 5% at 77 K) and a fast PL lifetime of 18 ns at room temperature
Beschreibung:Date Revised 25.02.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.9b00038