Asymmetric 3D Elastic-Plastic Strain-Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 19 vom: 30. Mai, Seite e1900597
1. Verfasser: Motlag, Maithilee (VerfasserIn)
Weitere Verfasser: Kumar, Prashant, Hu, Kevin Y, Jin, Shengyu, Li, Ji, Shao, Jiayi, Yi, Xuan, Lin, Yen-Hsiang, Walrath, Jenna C, Tong, Lei, Huang, Xinyu, Goldman, Rachel S, Ye, Lei, Cheng, Gary J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bandgap engineering optomechanical 3D straining single-layer graphene
LEADER 01000naa a22002652 4500
001 NLM295470941
003 DE-627
005 20231225083728.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201900597  |2 doi 
028 5 2 |a pubmed24n0984.xml 
035 |a (DE-627)NLM295470941 
035 |a (NLM)30924972 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Motlag, Maithilee  |e verfasserin  |4 aut 
245 1 0 |a Asymmetric 3D Elastic-Plastic Strain-Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in-plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic-plastic straining is reported that utilizes GPa-level laser shocking at a high strain rate (dε/dt) ≈ 106 -107 s-1 , with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High-resolution imaging and Raman spectroscopy reveal strain-induced modifications to the atomic and electronic structure in graphene and first-principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries 
650 4 |a Journal Article 
650 4 |a bandgap engineering 
650 4 |a optomechanical 3D straining 
650 4 |a single-layer graphene 
700 1 |a Kumar, Prashant  |e verfasserin  |4 aut 
700 1 |a Hu, Kevin Y  |e verfasserin  |4 aut 
700 1 |a Jin, Shengyu  |e verfasserin  |4 aut 
700 1 |a Li, Ji  |e verfasserin  |4 aut 
700 1 |a Shao, Jiayi  |e verfasserin  |4 aut 
700 1 |a Yi, Xuan  |e verfasserin  |4 aut 
700 1 |a Lin, Yen-Hsiang  |e verfasserin  |4 aut 
700 1 |a Walrath, Jenna C  |e verfasserin  |4 aut 
700 1 |a Tong, Lei  |e verfasserin  |4 aut 
700 1 |a Huang, Xinyu  |e verfasserin  |4 aut 
700 1 |a Goldman, Rachel S  |e verfasserin  |4 aut 
700 1 |a Ye, Lei  |e verfasserin  |4 aut 
700 1 |a Cheng, Gary J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 19 vom: 30. Mai, Seite e1900597  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:19  |g day:30  |g month:05  |g pages:e1900597 
856 4 0 |u http://dx.doi.org/10.1002/adma.201900597  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 19  |b 30  |c 05  |h e1900597