Influence of nitrate - ammonium ratio on the growth, nutrition, and metabolism of sugarcane

Copyright © 2019 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 139(2019) vom: 26. Juni, Seite 246-255
1. Verfasser: Boschiero, Beatriz Nastaro (VerfasserIn)
Weitere Verfasser: Mariano, Eduardo, Azevedo, Ricardo Antunes, Ocheuze Trivelin, Paulo Cesar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Nitrogen uptake Nitrogen use efficiency Oxidative stress Photosynthesis Saccharum spp. Ammonium Compounds Nitrates Nitrogen N762921K75 mehr... ammonium nitrate T8YA51M7Y6
Beschreibung
Zusammenfassung:Copyright © 2019 Elsevier Masson SAS. All rights reserved.
Although ammonium (NH4+) has been claimed as the preferential N source for sugarcane (Saccharum spp.), the intense uptake of this mineral form by plants can impair metabolic processes and crop yield. We aimed to assess the growth, nutrition, and metabolic responses of sugarcane grown under different amounts of nitrate (NO3-) and NH4+. Sugarcane setts were grown in nutrient solution at a total concentration of 15 mM N using different NO3-/NH4+ ratios (100/0, 75/25, 50/50, 25/75, and 0/100, respectively) for 163 d under controlled conditions. The pH of the medium was daily adjusted to 5.8 ± 0.1, with replacement of the hydroponic solution every 10 d. NH4+-only fed plants showed lower dry biomass yield, nutrient content, leaf surface area, and leaf gas exchange than those under sole NO3- supply, in addition to favoring the development of brown rust (Puccinia melanocephala). However, there was no indication that NH4+ is directly related to oxidative stress in sugarcane. On the other hand, the highest N utilization efficiency was obtained with NO3--only fed plants, which also resulted in the highest biomass yield, leaf surface area, nutrient content, leaf gas exchange, and root growth. Since NO3- was not stored in plant tissues, we therefore suggested that most of this N form is assimilated following its uptake. Despite the well-known preference of the crop for NH4+, the optimal growth response of sugarcane plants to NO3-/NH4+ ratios was observed under NO3- supply
Beschreibung:Date Completed 26.06.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2019.03.024