Content-Adaptive Noise Estimation for Color Images with Cross-Channel Noise Modeling

Noise estimation is crucial in many image processing tasks such as denoising. Most of the existing noise estimation methods are specially developed for grayscale images. For color images, these methods simply handle each color channel independently, without considering the correlation across channel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 22. März
1. Verfasser: Dong, Li (VerfasserIn)
Weitere Verfasser: Zhou, Jiantao, Tang, Yuan Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM295306963
003 DE-627
005 20240229162151.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2907039  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM295306963 
035 |a (NLM)30908223 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Li  |e verfasserin  |4 aut 
245 1 0 |a Content-Adaptive Noise Estimation for Color Images with Cross-Channel Noise Modeling 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Noise estimation is crucial in many image processing tasks such as denoising. Most of the existing noise estimation methods are specially developed for grayscale images. For color images, these methods simply handle each color channel independently, without considering the correlation across channels. Moreover, these methods often assume a globally fixed noise model throughout the entire image, neglecting the adaptation to the local structures. In this work, we propose a contentadaptive multivariate Gaussian approach to model the noise in color images, in which we explicitly consider both the contentdependence and the inter-dependence among color channels. We design an effective method for estimating the noise covariance matrices within the proposed model. Specifically, a patch selection scheme is first introduced to select weakly textured patches via thresholding the texture strength indicators. Noticing that the patch selection actually depends on the unknown noise covariance, we present an iterative noise covariance estimation algorithm, where the patch selection and the covariance estimation are conducted alternately. For the remaining textured regions, we estimate a distinct covariance matrix associated with each pixel using a linear shrinkage estimator, which adaptively fuses the estimate coming from the weakly textured region and the sample covariance estimated from the local region. Experimental results show that our method can effectively estimate the noise covariance. The usefulness of our method is demonstrated with several image processing applications such as color image denoising and noise-robust superpixel 
650 4 |a Journal Article 
700 1 |a Zhou, Jiantao  |e verfasserin  |4 aut 
700 1 |a Tang, Yuan Yan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 22. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:22  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2907039  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 22  |c 03