Structural Similarity-Based Nonlocal Variational Models for Image Restoration

In this paper, we propose and develop a novel nonlocal variational technique based on structural similarity (SS) information for image restoration problems. In the literature, patches extracted from images are compared according to their pixel values, and then nonlocal filtering can be employed for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 9 vom: 22. Sept., Seite 4260-4272
1. Verfasser: Wang, Wei (VerfasserIn)
Weitere Verfasser: Li, Fang, Ng, Michael K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM295306920
003 DE-627
005 20231225083357.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2906491  |2 doi 
028 5 2 |a pubmed24n0984.xml 
035 |a (DE-627)NLM295306920 
035 |a (NLM)30908219 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wei  |e verfasserin  |4 aut 
245 1 0 |a Structural Similarity-Based Nonlocal Variational Models for Image Restoration 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.07.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose and develop a novel nonlocal variational technique based on structural similarity (SS) information for image restoration problems. In the literature, patches extracted from images are compared according to their pixel values, and then nonlocal filtering can be employed for image restoration. The disadvantage of this approach is that intensity-based patch distance may not be effective in image restoration, especially for images containing texture or structural information. The main aim of this paper is to propose using SS between image patches to develop nonlocal regularization models. In particular, two types of nonlocal regularizing functions are studied: an SS-based nonlocal quadratic function (SS-NLH1) and an SS-based nonlocal total variation function (SS-NLTV) for regularization of image restoration problems. Moreover, we employ iterative algorithms to solve these SS-NLH1 and SS-NLTV variational models numerically and discuss the convergence of these algorithms. The experimental results are presented to demonstrate the effectiveness of the proposed models 
650 4 |a Journal Article 
700 1 |a Li, Fang  |e verfasserin  |4 aut 
700 1 |a Ng, Michael K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 9 vom: 22. Sept., Seite 4260-4272  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:9  |g day:22  |g month:09  |g pages:4260-4272 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2906491  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 9  |b 22  |c 09  |h 4260-4272