LMR : Learning a Two-Class Classifier for Mismatch Removal

Feature matching, which refers to establishing reliable correspondence between two sets of features, is a critical prerequisite in a wide spectrum of vision-based tasks. Existing attempts typically involve the mismatch removal from a set of putative matches based on estimating the underlying image t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 8 vom: 22. Aug., Seite 4045-4059
1. Verfasser: Ma, Jiayi (VerfasserIn)
Weitere Verfasser: Jiang, Xingyu, Jiang, Junjun, Zhao, Ji, Guo, Xiaojie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM295306912
003 DE-627
005 20231225083357.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2906490  |2 doi 
028 5 2 |a pubmed24n0984.xml 
035 |a (DE-627)NLM295306912 
035 |a (NLM)30908218 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
245 1 0 |a LMR  |b Learning a Two-Class Classifier for Mismatch Removal 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.06.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Feature matching, which refers to establishing reliable correspondence between two sets of features, is a critical prerequisite in a wide spectrum of vision-based tasks. Existing attempts typically involve the mismatch removal from a set of putative matches based on estimating the underlying image transformation. However, the transformation could vary with different data. Thus, a pre-defined transformation model is often demanded, which severely limits the applicability. From a novel perspective, this paper casts the mismatch removal into a two-class classification problem, learning a general classifier to determine the correctness of an arbitrary putative match, termed as Learning for Mismatch Removal (LMR). The classifier is trained based on a general match representation associated with each putative match through exploiting the consensus of local neighborhood structures based on a multiple K -nearest neighbors strategy. With only ten training image pairs involving about 8000 putative matches, the learned classifier can generate promising matching results in linearithmic time complexity on arbitrary testing data. The generality and robustness of our approach are verified under several representative supervised learning techniques as well as on different training and testing data. Extensive experiments on feature matching, visual homing, and near-duplicate image retrieval are conducted to reveal the superiority of our LMR over the state-of-the-art competitors 
650 4 |a Journal Article 
700 1 |a Jiang, Xingyu  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Zhao, Ji  |e verfasserin  |4 aut 
700 1 |a Guo, Xiaojie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 8 vom: 22. Aug., Seite 4045-4059  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:8  |g day:22  |g month:08  |g pages:4045-4059 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2906490  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 8  |b 22  |c 08  |h 4045-4059