Spatially explicit survival modeling for small area cancer data

In this paper we propose a novel Bayesian statistical methodology for spatial survival data. Our methodology broadens the definition of the survival, density and hazard functions by explicitly modeling the spatial dependency using direct derivations of these functions and their marginals and conditi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 45(2018), 3 vom: 15., Seite 568-585
1. Verfasser: Onicescu, G (VerfasserIn)
Weitere Verfasser: Lawson, A, Zhang, J, Gebregziabher, Mulugeta, Wallace, Kristin, Eberth, J M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian hierarchical models Markov chain Monte Carlo kernel convolution prostate cancer spatial