Variations in pH significantly affect cadmium uptake in grafted muskmelon (Cucumis melo L.) plants and drive the diversity of bacterial communities in a seedling substrate
Copyright © 2019 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 139(2019) vom: 15. Juni, Seite 132-140 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Bacterial structure Cadmium adsorption Grafting Growing substrate pH level RNA, Ribosomal, 16S Cadmium 00BH33GNGH Chlorophyll mehr... |
Zusammenfassung: | Copyright © 2019 Elsevier Masson SAS. All rights reserved. Substrates are fundamental prerequisites for growing grafted seedlings. In this study, substrates with different pH levels (5.0, 5.5, 6.0, 6.5, 7.0, and 8.0) were set up to elucidate the effect of pH on cadmium (Cd) uptake in grafted muskmelon (Cucumis melo L.) plants. Bacterial diversity was also investigated. Results showed that pH and high Cd concentration greatly affected the growth of grafted plants. The chlorophyll content of the muskmelon leaves decreased at 100 μM Cd. The majority of the Cd ions accumulated in the rootstock rather than in the shoot tissue in all of the treatments. The shoots and roots showed the highest Cd content at pH 5.5 and the lowest Cd content at pH 8.0 regardless of the Cd concentration. The operational taxonomic units belonging to Proteobacteria and Bacteroidetes were significantly (p < 0.05) enriched at different substrate pH levels compared with those at pH 5.0. The operational taxonomic units belonging to the phyla Firmicutes, Acidobacteria, and Chloroflexi were significantly decreased. The available nitrogen, phosphorus, Cd, and pH were strongly linked to bacterial community compositions. On the contrary, the available potassium was weakly correlated with the bacterial structure. This study demonstrates that pH greatly affects Cd uptake in grafted muskmelon plants and predicts microbial community structures in breeding substrates with different pH levels. Our results suggest that Cd accumulation in grafted plants can be reduced by setting the appropriate substrate pH. This work can serve as a reference for growing high-quality grafted plants and ensuring food safety in the presence of Cd contamination |
---|---|
Beschreibung: | Date Completed 10.06.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2019.03.013 |