Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses

© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 223(2019), 1 vom: 15. Juli, Seite 204-219
1. Verfasser: Lam, Pui Ying (VerfasserIn)
Weitere Verfasser: Lui, Andy C W, Yamamura, Masaomi, Wang, Lanxiang, Takeda, Yuri, Suzuki, Shiro, Liu, Hongjia, Zhu, Fu-Yuan, Chen, Mo-Xian, Zhang, Jianhua, Umezawa, Toshiaki, Tobimatsu, Yuki, Lo, Clive
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CRISPR/Cas9 biomass saccharification flavone C-glycosides grasses pathway-specific flavonoid B-ring hydroxylases rice (Oryza sativa) tricin-lignins Flavones mehr... Flavonoids Glycosides Lignin 9005-53-2 Cytochrome P-450 Enzyme System 9035-51-2 Mixed Function Oxygenases EC 1.- flavone S2V45N7G3B
LEADER 01000naa a22002652 4500
001 NLM295067411
003 DE-627
005 20231225082842.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.15795  |2 doi 
028 5 2 |a pubmed24n0983.xml 
035 |a (DE-627)NLM295067411 
035 |a (NLM)30883799 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lam, Pui Ying  |e verfasserin  |4 aut 
245 1 0 |a Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.03.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. 
520 |a In rice (Oryza sativa), OsF2H and OsFNSII direct flavanones to independent pathways that form soluble flavone C-glycosides and tricin-type metabolites (both soluble and lignin-bound), respectively. Production of soluble tricin metabolites requires CYP75B4 as a chrysoeriol 5'-hydroxylase. Meanwhile, the close homologue CYP75B3 is a canonical flavonoid 3'-hydroxylase (F3'H). However, their precise roles in the biosynthesis of soluble flavone C-glycosides and tricin-lignins in cell walls remain unknown. We examined CYP75B3 and CYP75B4 expression in vegetative tissues, analyzed extractable flavonoid profiles, cell wall structure and digestibility of their mutants, and investigated catalytic activities of CYP75B4 orthologues in grasses. CYP75B3 and CYP75B4 showed co-expression patterns with OsF2H and OsFNSII, respectively. CYP75B3 is the sole F3'H in flavone C-glycosides biosynthesis, whereas CYP75B4 alone provides sufficient 3',5'-hydroxylation for tricin-lignin deposition. CYP75B4 mutation results in production of apigenin-incorporated lignin and enhancement of cell wall digestibility. Moreover, tricin pathway-specific 3',5'-hydroxylation activities are conserved in sorghum CYP75B97 and switchgrass CYP75B11. CYP75B3 and CYP75B4 represent two different pathway-specific enzymes recruited together with OsF2H and OsFNSII, respectively. Interestingly, the OsF2H-CYP75B3 and OsFNSII-CYP75B4 pairs appear to be conserved in grasses. Finally, manipulation of tricin biosynthesis through CYP75B4 orthologues can be a promising strategy to improve digestibility of grass biomass for biofuel and biomaterial production 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a CRISPR/Cas9 
650 4 |a biomass saccharification 
650 4 |a flavone C-glycosides 
650 4 |a grasses 
650 4 |a pathway-specific flavonoid B-ring hydroxylases 
650 4 |a rice (Oryza sativa) 
650 4 |a tricin-lignins 
650 7 |a Flavones  |2 NLM 
650 7 |a Flavonoids  |2 NLM 
650 7 |a Glycosides  |2 NLM 
650 7 |a Lignin  |2 NLM 
650 7 |a 9005-53-2  |2 NLM 
650 7 |a Cytochrome P-450 Enzyme System  |2 NLM 
650 7 |a 9035-51-2  |2 NLM 
650 7 |a Mixed Function Oxygenases  |2 NLM 
650 7 |a EC 1.-  |2 NLM 
650 7 |a flavone  |2 NLM 
650 7 |a S2V45N7G3B  |2 NLM 
700 1 |a Lui, Andy C W  |e verfasserin  |4 aut 
700 1 |a Yamamura, Masaomi  |e verfasserin  |4 aut 
700 1 |a Wang, Lanxiang  |e verfasserin  |4 aut 
700 1 |a Takeda, Yuri  |e verfasserin  |4 aut 
700 1 |a Suzuki, Shiro  |e verfasserin  |4 aut 
700 1 |a Liu, Hongjia  |e verfasserin  |4 aut 
700 1 |a Zhu, Fu-Yuan  |e verfasserin  |4 aut 
700 1 |a Chen, Mo-Xian  |e verfasserin  |4 aut 
700 1 |a Zhang, Jianhua  |e verfasserin  |4 aut 
700 1 |a Umezawa, Toshiaki  |e verfasserin  |4 aut 
700 1 |a Tobimatsu, Yuki  |e verfasserin  |4 aut 
700 1 |a Lo, Clive  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 223(2019), 1 vom: 15. Juli, Seite 204-219  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:223  |g year:2019  |g number:1  |g day:15  |g month:07  |g pages:204-219 
856 4 0 |u http://dx.doi.org/10.1111/nph.15795  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 223  |j 2019  |e 1  |b 15  |c 07  |h 204-219