3D2SeqViews : Aggregating Sequential Views for 3D Global Feature Learning by CNN With Hierarchical Attention Aggregation

Learning 3D global features by aggregating multiple views is important. Pooling is widely used to aggregate views in deep learning models. However, pooling disregards a lot of content information within views and the spatial relationship among the views, which limits the discriminability of learned...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 8 vom: 13. Aug., Seite 3986-3999
1. Verfasser: Han, Zhizhong (VerfasserIn)
Weitere Verfasser: Lu, Honglei, Liu, Zhenbao, Vong, Chi-Man, Liu, Yu-Shen, Zwicker, Matthias, Han, Junwei, Chen, C L Philip
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM294953043
003 DE-627
005 20231225082611.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2904460  |2 doi 
028 5 2 |a pubmed24n0983.xml 
035 |a (DE-627)NLM294953043 
035 |a (NLM)30872228 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Zhizhong  |e verfasserin  |4 aut 
245 1 0 |a 3D2SeqViews  |b Aggregating Sequential Views for 3D Global Feature Learning by CNN With Hierarchical Attention Aggregation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.06.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning 3D global features by aggregating multiple views is important. Pooling is widely used to aggregate views in deep learning models. However, pooling disregards a lot of content information within views and the spatial relationship among the views, which limits the discriminability of learned features. To resolve this issue, 3D to Sequential Views (3D2SeqViews) is proposed to more effectively aggregate the sequential views using convolutional neural networks with a novel hierarchical attention aggregation. Specifically, the content information within each view is first encoded. Then, the encoded view content information and the sequential spatiality among the views are simultaneously aggregated by the hierarchical attention aggregation, where view-level attention and class-level attention are proposed to hierarchically weight sequential views and shape classes. View-level attention is learned to indicate how much attention is paid to each view by each shape class, which subsequently weights sequential views through a novel recursive view integration. Recursive view integration learns the semantic meaning of view sequence, which is robust to the first view position. Furthermore, class-level attention is introduced to describe how much attention is paid to each shape class, which innovatively employs the discriminative ability of the fine-tuned network. 3D2SeqViews learns more discriminative features than the state-of-the-art, which leads to the outperforming results in shape classification and retrieval under three large-scale benchmarks 
650 4 |a Journal Article 
700 1 |a Lu, Honglei  |e verfasserin  |4 aut 
700 1 |a Liu, Zhenbao  |e verfasserin  |4 aut 
700 1 |a Vong, Chi-Man  |e verfasserin  |4 aut 
700 1 |a Liu, Yu-Shen  |e verfasserin  |4 aut 
700 1 |a Zwicker, Matthias  |e verfasserin  |4 aut 
700 1 |a Han, Junwei  |e verfasserin  |4 aut 
700 1 |a Chen, C L Philip  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 8 vom: 13. Aug., Seite 3986-3999  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:8  |g day:13  |g month:08  |g pages:3986-3999 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2904460  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 8  |b 13  |c 08  |h 3986-3999