A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 17 vom: 01. Apr., Seite e1805580
1. Verfasser: Kim, Younghoon (VerfasserIn)
Weitere Verfasser: Che, Fanglin, Jo, Jea Woong, Choi, Jongmin, García de Arquer, F Pelayo, Voznyy, Oleksandr, Sun, Bin, Kim, Junghwan, Choi, Min-Jae, Quintero-Bermudez, Rafael, Fan, Fengjia, Tan, Chih Shan, Bladt, Eva, Walters, Grant, Proppe, Andrew H, Zou, Chengqin, Yuan, Haifeng, Bals, Sara, Hofkens, Johan, Roeffaers, Maarten B J, Hoogland, Sjoerd, Sargent, Edward H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article colloidal quantum dots facet-specific passivation infrared solar cells narrow bandgap sodium acetate
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (≈47 meV) and Urbach tail (≈29 meV). This approach provides a ≈50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a ≈70% external quantum efficiency at their excitonic peak
Beschreibung:Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201805580