Aluminum alkoxy-catalyzed biomass conversion of glucose to 5-hydroxymethylfurfural : Mechanistic study of the cooperative bifunctional catalysis

© 2019 Wiley Periodicals, Inc.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 40(2019), 16 vom: 15. Juni, Seite 1599-1608
Auteur principal: Wang, Qing (Auteur)
Autres auteurs: Fu, Mingxing, Li, Xiaojun, Huang, Runfeng, Glaser, Rainer E, Zhao, Lili
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Research Support, Non-U.S. Gov't DFT calculations HMF aluminum alkoxy catalyst glucose reaction mechanism Alcohols Organometallic Compounds alkoxyl radical plus... 5-hydroxymethylfurfural 70ETD81LF0 Aluminum CPD4NFA903 Furaldehyde DJ1HGI319P Glucose IY9XDZ35W2
LEADER 01000caa a22002652c 4500
001 NLM294717609
003 DE-627
005 20250225001012.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25812  |2 doi 
028 5 2 |a pubmed25n0982.xml 
035 |a (DE-627)NLM294717609 
035 |a (NLM)30847957 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Qing  |e verfasserin  |4 aut 
245 1 0 |a Aluminum alkoxy-catalyzed biomass conversion of glucose to 5-hydroxymethylfurfural  |b Mechanistic study of the cooperative bifunctional catalysis 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.08.2020 
500 |a Date Revised 11.08.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a Density functional theory calculations were performed to understand the detailed reaction mechanism of aluminum alkoxy-catalyzed conversion of glucose to 5-hydroxymethylfurfural (HMF) using Al(OMe)3 as catalyst. Potential energy surfaces were studied for aggregates formed between the organic compounds and Al(OMe)3 and effects of the medium were considered via continuum solvent models. The reaction takes place via two stages: isomerization from glucose to fructose (stage I) and transformation of fructose to HMF (stage II). Stage II includes three successive dehydrations, which begins with a 1,2-elimination to form an enolate (i.e., B), continues with the formation of the acrolein moiety (i.e., D), and ends with the formation of the furan ring (i.e., HMF). All of these steps are facilitated by aluminum alkoxy catalysis. The highest barriers for stage I and stage II are 23.9 and 31.2 kcal/mol, respectively, and the overall catalytic reaction is highly exothermic. The energetic and geometric results indicate that the catalyzed reaction path has feasible kinetics and thermodynamics and is consistent with the experimental process under high temperature (i.e., 120 °C). Remarkably, the released water molecules in stage II act as the product, reactant, proton shuttle, as well as stabilizer in the conversion of fructose to HMF. The metal-ligand functionality of the Al(OMe)3 catalyst, which combines cooperative Lewis acid and Lewis base properties and thereby enables proton shuttling, plays a crucial role in the overall catalysis and is responsible for the high reactivity. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a DFT calculations 
650 4 |a HMF 
650 4 |a aluminum alkoxy catalyst 
650 4 |a glucose 
650 4 |a reaction mechanism 
650 7 |a Alcohols  |2 NLM 
650 7 |a Organometallic Compounds  |2 NLM 
650 7 |a alkoxyl radical  |2 NLM 
650 7 |a 5-hydroxymethylfurfural  |2 NLM 
650 7 |a 70ETD81LF0  |2 NLM 
650 7 |a Aluminum  |2 NLM 
650 7 |a CPD4NFA903  |2 NLM 
650 7 |a Furaldehyde  |2 NLM 
650 7 |a DJ1HGI319P  |2 NLM 
650 7 |a Glucose  |2 NLM 
650 7 |a IY9XDZ35W2  |2 NLM 
700 1 |a Fu, Mingxing  |e verfasserin  |4 aut 
700 1 |a Li, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Huang, Runfeng  |e verfasserin  |4 aut 
700 1 |a Glaser, Rainer E  |e verfasserin  |4 aut 
700 1 |a Zhao, Lili  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 16 vom: 15. Juni, Seite 1599-1608  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:40  |g year:2019  |g number:16  |g day:15  |g month:06  |g pages:1599-1608 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25812  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 16  |b 15  |c 06  |h 1599-1608