Influence of three microalgal-based cultivation technologies on different domestic wastewater and biogas purification in photobioreactor

© 2019 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 91(2019), 8 vom: 17. Aug., Seite 679-688
1. Verfasser: Sun, Shiqing (VerfasserIn)
Weitere Verfasser: Hu, Changwei, Gao, Shumei, Zhao, Yongjun, Xu, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Comparative Study Evaluation Study Journal Article biogas upgrading biomass production cocultivation economic efficiency nutrient removal Biofuels
Beschreibung
Zusammenfassung:© 2019 Water Environment Federation.
To investigate the effects of different microalgae and culture methods on the purification of domestic wastewater and biogas, Chlorella vulgaris and Scenedesmus obliquus were selected. Three different culture methods (monoculture, microalgal-fungi cocultivation, and microalgal-activated sludge cocultivation) were used to remove nutrients from four different domestic wastewaters and remove CO2 from raw biogas in a photobioreactor. The results show that the effluent from the centrate of pretreated urban wastewater (WW4) achieved the highest nutrient and CO2 removal efficiency. Cocultivation of C. vulgaris and activated sludge achieved the highest COD, TP, and CO2 removal efficiencies of 79.27%, 81.25%, and 60.39% with WW4, respectively. Cocultivation of C. vulgaris and fungi achieved the highest TN removal efficiency of 78.46% with WW4. The contents of C, N, and P in the microalgal-activated sludge symbiont after treatment exceeded 50%, 8%, and 0.8%, respectively. Highly economically efficient energy consumption was achieved with WW4 for both C. vulgaris and S. obliquus. Microalgal-activated sludge cocultivation was identified as the optimal option for the simultaneous purification of wastewater and biogas based on its high pollution and CO2 removal efficiency. This provides a reference for the microalgal-based purification of actual domestic wastewater and raw biogas. PRACTITIONER POINTS: Nutrient and CO2 were efficiently removed by C. vulgaris with activated sludge. CO2 was removed up to 60.4% and was economically viable. Cocultivation of C. vulgaris and fungi could achieve the highest TN removal with WW4
Beschreibung:Date Completed 14.08.2019
Date Revised 10.12.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1554-7531
DOI:10.1002/wer.1097