Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 16 vom: 15. Apr., Seite e1900341
1. Verfasser: Peng, Xinwen (VerfasserIn)
Weitere Verfasser: Zhang, Lei, Chen, Zhongxin, Zhong, Linxin, Zhao, Dengke, Chi, Xiao, Zhao, Xiaoxu, Li, Ligui, Lu, Xihong, Leng, Kai, Liu, Cuibo, Liu, Wei, Tang, Wei, Loh, Kian Ping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Zn-air batteries bulk transformation hierarchical structures nature inspired wood-based materials Oxides Carbon 7440-44-0 Zinc mehr... J41CSQ7QDS Nitrogen N762921K75 Oxygen S88TT14065
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Porous carbon electrodes have emerged as important cathode materials for metal-air battery systems. However, most approaches for fabricating porous carbon electrodes from biomass are highly energy inefficient as they require the breaking down of the biomass and its subsequent reconstitution into powder-like carbon. Here, enzymes are explored to effectively hydrolyze the partial cellulose in bulk raw wood to form a large number of nanopores, which helps to maximally expose the inner parts of the raw wood to sufficiently dope nitrogen onto the carbon skeletons during the subsequent pyrolysis process. The resulting carbons exhibit excellent catalytic activity with respect to the oxygen reduction and oxygen evolution reactions. As-fabricated cellulose-digested, carbonized wood plates are mechanically strong, have high conductivity, and contain a crosslinked network and natural ion-transport channels and can be employed directly as metal-free electrodes without carbon paper, polymer binders, or carbon black. When used as metal-free cathodes in zinc-air batteries, they result in a specific capacity of 801 mA h g-1 and an energy density of 955 W h kg-1 with the long-term stability of the batteries being as high as 110 h. This work paves the way for the ready conversion of abundant biomass into high-value engineering products for energy-related applications
Beschreibung:Date Completed 08.08.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201900341