|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM294608508 |
003 |
DE-627 |
005 |
20231225081845.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.8b03994
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0982.xml
|
035 |
|
|
|a (DE-627)NLM294608508
|
035 |
|
|
|a (NLM)30836748
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Holm, Alexander
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a General Self-Assembly Method for Deposition of Graphene Oxide into Uniform Close-Packed Monolayer Films
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Depositing a morphologically uniform monolayer film of graphene oxide (GO) single-layer sheets is an important step in the processing of many composites and devices. Conventional Langmuir-Blodgett (LB) deposition is often considered to give the highest degree of morphology control, but film microstructures still vary widely between GO samples. The main challenge is in the sensitive self-assembly of GO samples with different sheet sizes and degrees of oxidation. To overcome this drawback, here, we identify a general method that relies on robust assembly between GO and a cationic surfactant (cationic surfactant-assisted LB). We systematically compared conventional LB and cationic surfactant-assisted LB for three common GO samples of widely different sheet sizes and degrees of oxidation. Although conventional LB may occasionally provide satisfactory film morphology, cationic surfactant-assisted LB is general and allows deposition of films with tunable and uniform morphologies-ranging from close-packed to overlapping single layers-from all three types of GO samples investigated. Because cationic surfactant-assisted LB is robust and general, we expect this method to broaden and facilitate the use of GO in many applications where precise control over film morphology is crucial
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kunz, Larissa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Riscoe, Andrew R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kao, Kun-Che
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cargnello, Matteo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Frank, Curtis W
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 35(2019), 13 vom: 02. Apr., Seite 4460-4470
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2019
|g number:13
|g day:02
|g month:04
|g pages:4460-4470
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.8b03994
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2019
|e 13
|b 02
|c 04
|h 4460-4470
|