Learning Multiple Local Metrics : Global Consideration Helps

Learning distance metric between objects provides a better measurement for their relative comparisons. Due to the complex properties inside or between heterogeneous objects, multiple local metrics become an essential representation tool to depict various local characteristics of examples. Different...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 7 vom: 05. Juli, Seite 1698-1712
1. Verfasser: Ye, Han-Jia (VerfasserIn)
Weitere Verfasser: Zhan, De-Chuan, Li, Nan, Jiang, Yuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM294593446
003 DE-627
005 20231225081823.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2901675  |2 doi 
028 5 2 |a pubmed24n0981.xml 
035 |a (DE-627)NLM294593446 
035 |a (NLM)30835209 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Han-Jia  |e verfasserin  |4 aut 
245 1 0 |a Learning Multiple Local Metrics  |b Global Consideration Helps 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.09.2020 
500 |a Date Revised 14.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning distance metric between objects provides a better measurement for their relative comparisons. Due to the complex properties inside or between heterogeneous objects, multiple local metrics become an essential representation tool to depict various local characteristics of examples. Different from existing methods building more than one local metric directly, however in this paper, we emphasize the effect of the global metric when generating those local ones. Since local metrics can be considered as types of amendments which describe the biases towards localities based on some commonly shared characteristic, it is expected that the performance of every single local metric for a specified locality can be "lifted" when learning with the global jointly. Following this consideration, we propose the Local metrIcs Facilitated Transformation (Lift) framework, where an adaptive number of local transformations are constructed with the help of their global counterpart. Generalization analyses not only reveal the relationship between the global and local metrics but also indicate when and why the framework works theoretically. In the implementation of Lift, locality anchored centers assist the decomposition of multiple local views, and a diversity regularizer is proposed to reduce the redundancy among biases. Empirical classification comparisons reveal the superiority of the Lift idea. Numerical and visualization investigations on different domains validate its adaptability and comprehensibility as well 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhan, De-Chuan  |e verfasserin  |4 aut 
700 1 |a Li, Nan  |e verfasserin  |4 aut 
700 1 |a Jiang, Yuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 7 vom: 05. Juli, Seite 1698-1712  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:7  |g day:05  |g month:07  |g pages:1698-1712 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2901675  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 7  |b 05  |c 07  |h 1698-1712