Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients

Copyright © 2019 Elsevier Inc. All rights reserved.

Détails bibliographiques
Publié dans:Clinical immunology (Orlando, Fla.). - 1999. - 202(2019) vom: 15. Mai, Seite 1-10
Auteur principal: Kim, Ki-Jo (Auteur)
Autres auteurs: Kim, Minseung, Adamopoulos, Iannis E, Tagkopoulos, Ilias
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Clinical immunology (Orlando, Fla.)
Sujets:Journal Article Clustering Drug responsiveness Gene expression Machine learning Rheumatoid arthritis
LEADER 01000caa a22002652c 4500
001 NLM294554459
003 DE-627
005 20250224232857.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.clim.2019.03.002  |2 doi 
028 5 2 |a pubmed25n0981.xml 
035 |a (DE-627)NLM294554459 
035 |a (NLM)30831253 
035 |a (PII)S1521-6616(18)30733-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Ki-Jo  |e verfasserin  |4 aut 
245 1 0 |a Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.02.2020 
500 |a Date Revised 03.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2019 Elsevier Inc. All rights reserved. 
520 |a Rheumatoid arthritis (RA) is therapeutically challenging due to patient heterogeneity and variability. Herein we describe a novel integration of RA synovial genome-scale transcriptomic profiling of different patient cohorts that can be used to provide predictive insights on drug responses. A normalized compendium consisting of 256 RA synovial samples that cover an intersection of 11,769 genes from 11 datasets was build and compared with similar datasets derived from OA patients and healthy controls. Differentially expression genes (DEGs) that were identified in three independent methods were fed into functional network analysis, with subsequent grouping of the samples based on a non-negative matrix factorization method. RA-relevant pathway activation scores and four machine learning classification techniques supported the generation of a predictive model of patient treatment response. We identified 876 up-regulated DEGs including 24 known genetic risk factors and 8 drug targets. DEG-based subgrouping revealed 3 distinct RA patient clusters with distinct activity signatures for RA-relevant pathways. In the case of infliximab, we constructed a classifier of drug response that was highly accurate with an AUC/AUPR of 0.92/0.86. The most informative pathways in achieving this performance were the NFκB-, FcεRI- TCR-, and TNF signaling pathways. Similarly, the expression of the HMMR, PRPF4B, EVI2A, RAB27A, MALT1, SNX6, and IFIH1 genes contributed in predicting the patient outcome. Construction and analysis of normalized synovial transcriptomic compendia can provide useful insights for understanding RA-related pathway involvement and drug responses for individual patients 
650 4 |a Journal Article 
650 4 |a Clustering 
650 4 |a Drug responsiveness 
650 4 |a Gene expression 
650 4 |a Machine learning 
650 4 |a Rheumatoid arthritis 
700 1 |a Kim, Minseung  |e verfasserin  |4 aut 
700 1 |a Adamopoulos, Iannis E  |e verfasserin  |4 aut 
700 1 |a Tagkopoulos, Ilias  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Clinical immunology (Orlando, Fla.)  |d 1999  |g 202(2019) vom: 15. Mai, Seite 1-10  |w (DE-627)NLM098196855  |x 1521-7035  |7 nnas 
773 1 8 |g volume:202  |g year:2019  |g day:15  |g month:05  |g pages:1-10 
856 4 0 |u http://dx.doi.org/10.1016/j.clim.2019.03.002  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 202  |j 2019  |b 15  |c 05  |h 1-10