Solids Under Extreme Shear : Friction-Mediated Subsurface Structural Transformations

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 26 vom: 07. Juni, Seite e1806705
1. Verfasser: Greiner, Christian (VerfasserIn)
Weitere Verfasser: Gagel, Johanna, Gumbsch, Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review copper discrete dislocation dynamics electron microscopy microstructures tribology
LEADER 01000naa a22002652 4500
001 NLM294531785
003 DE-627
005 20231225081703.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201806705  |2 doi 
028 5 2 |a pubmed24n0981.xml 
035 |a (DE-627)NLM294531785 
035 |a (NLM)30828903 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Greiner, Christian  |e verfasserin  |4 aut 
245 1 0 |a Solids Under Extreme Shear  |b Friction-Mediated Subsurface Structural Transformations 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Tribological contacts consume a significant amount of the world's primary energy due to friction and wear in different products from nanoelectromechanical systems to bearings, gears, and engines. The energy is largely dissipated in the material underneath the two surfaces sliding against each other. This subsurface material is thereby exposed to extreme amounts of shear deformation and often forms layered subsurface microstructures with reduced grain size. Herein, the elementary mechanisms for the formation of subsurface microstructures are elucidated by systematic model experiments and discrete dislocation dynamics simulations in dry frictional contacts. The simulations show how pre-existing dislocations transform into prismatic dislocation structures under tribological loading. The stress field under a moving spherical contact and the crystallographic orientation are crucial for the formation of these prismatic structures. Experimentally, a localized dislocation structure at a depth of ≈100-150 nm is found already after the first loading pass. This dislocation structure is shown to be connected to the inhomogeneous stress field under the moving contact. The subsequent microstructural transformations and the mechanical properties of the surface layer are determined by this structure. These results hold promise at guiding material selection and alloy development for tribological loading, yielding materials tailored for specific tribological scenarios 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a copper 
650 4 |a discrete dislocation dynamics 
650 4 |a electron microscopy 
650 4 |a microstructures 
650 4 |a tribology 
700 1 |a Gagel, Johanna  |e verfasserin  |4 aut 
700 1 |a Gumbsch, Peter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 26 vom: 07. Juni, Seite e1806705  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:26  |g day:07  |g month:06  |g pages:e1806705 
856 4 0 |u http://dx.doi.org/10.1002/adma.201806705  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 26  |b 07  |c 06  |h e1806705