Dcdftbmd : Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 15 vom: 05. Juni, Seite 1538-1549
1. Verfasser: Nishimura, Yoshifumi (VerfasserIn)
Weitere Verfasser: Nakai, Hiromi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't density functional tight-binding method divide-and-conquer method metadynamics molecular dynamics
LEADER 01000naa a22002652 4500
001 NLM294531157
003 DE-627
005 20231225081703.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25804  |2 doi 
028 5 2 |a pubmed24n0981.xml 
035 |a (DE-627)NLM294531157 
035 |a (NLM)30828839 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nishimura, Yoshifumi  |e verfasserin  |4 aut 
245 1 0 |a Dcdftbmd  |b Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.05.2020 
500 |a Date Revised 15.05.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a Dcdftbmd is a Fortran 90/95 program that enables efficient quantum mechanical molecular dynamics (MD) simulations using divide-and-conquer density functional tight-binding (DC-DFTB) method. Based on the remarkable performance of previous massively parallel DC-DFTB energy and gradient calculations for huge systems, the code has been specialized to MD simulations. Recent implementations and modifications including DFTB extensions, improved computational speed in the DC-DFTB computational steps, algorithms for efficient initial guess charge prediction, and free energy calculations via metadynamics technique have enhanced the capability to obtain atomistic insights in novel applications to nanomaterials and biomolecules. The energy, structure, and other molecular properties are also accessible through the single-point calculation, geometry optimization, and vibrational frequency analysis. The available functionalities are outlined together with efficiency tests and simulation examples. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a density functional tight-binding method 
650 4 |a divide-and-conquer method 
650 4 |a metadynamics 
650 4 |a molecular dynamics 
700 1 |a Nakai, Hiromi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 15 vom: 05. Juni, Seite 1538-1549  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:15  |g day:05  |g month:06  |g pages:1538-1549 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25804  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 15  |b 05  |c 06  |h 1538-1549