Functional conservation of CYCLOPS in crack entry legume Arachis hypogaea

Copyright © 2018 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 281(2019) vom: 01. Apr., Seite 232-241
1. Verfasser: Das, Debapriya Rajlakshmi (VerfasserIn)
Weitere Verfasser: Horváth, Beatrix, Kundu, Anindya, Kaló, Péter, DasGupta, Maitrayee
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Arachis hypogaea CYCLOPS Medicago truncatula Nodulation Symbiotic nitrogen fixation Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier B.V. All rights reserved.
Root nodule symbiosis in legumes is established following interaction of compatible rhizobia that activates an array of genes, commonly known as symbiotic-pathway, resulting in nodule development. In model legumes, bacterial entry mainly occurs through infection thread involving the expression of transcription factor CYCLOPS/IPD3. Here we show the functional analysis of AhCYCLOPS in Arachis hypogaea where bacteria invade roots through epidermal cracks. Exploiting significant cross-species domain conservation, trans-complementation experiments involving ectopic expression of AhCYCLOPS in transgenic hairy-roots of Medicago truncatula ipd3 mutants resulted in functional complementation of Medicago nodules. Moreover, native promoter of AhCYCLOPS was sufficient for this cross-species complementation irrespective of the different modes of infection of roots by rhizobia and nodule ontology. To unravel the role of AhCYCLOPS during 'crack-entry' nodulation in A. hypogaea, RNAi of AhCYCLOPS was performed which resulted in delayed nodule inception followed by drastic reduction in nodule number on transgenic hairy-roots. The infection zone of a significant number of RNAi nodules showed presence of infected cells with enlarged nucleus and rod shaped undifferentiated bacteria. Expression analysis showed downregulation of several nodulation responsible effectors endorsing the compromised condition of RNAi roots. Together, the results indicated that AhCYCLOPS plays an important role in A. hypogaea nodule development
Beschreibung:Date Completed 18.03.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2018.12.003