Bulk Nanostructured Materials Design for Fracture-Resistant Lithium Metal Anodes

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 15 vom: 02. Apr., Seite e1807585
1. Verfasser: Liu, Shan (VerfasserIn)
Weitere Verfasser: Deng, Lijun, Guo, Wenqing, Zhang, Chanyuan, Liu, Xingjiang, Luo, Jiayan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li metal anodes bulk nanostructured materials fracture-resistant maximum capacity rate capability
LEADER 01000naa a22002652 4500
001 NLM294362924
003 DE-627
005 20231225081324.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201807585  |2 doi 
028 5 2 |a pubmed24n0981.xml 
035 |a (DE-627)NLM294362924 
035 |a (NLM)30811724 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Shan  |e verfasserin  |4 aut 
245 1 0 |a Bulk Nanostructured Materials Design for Fracture-Resistant Lithium Metal Anodes 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.04.2019 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Li metal is an ideal anode for next-generation batteries because of its high theoretical capacity and low potential. However, the unevenly distributed stress in Li metal anodes (LMAs) induced by volume fluctuation may cause the electrode to fracture easily, especially during high-rate plating/stripping processes. Here fracture-resistant LMAs using the concept of bulk nanostructured materials are designed via a metallurgical process. In bulk nanostructured Li (BNL), ionic conducting phases exist at grain boundaries, which promote Li+ transport. The refined Li grain size and precipitation hardening in BNL enhances the mechanical strength and fatigue endurance, alleviating the unevenly distributed stress and preventing electrode pulverization. Density functional theory is used to investigate the binding energy between Li and various kinds of oxides and SiO2 is found to be optimal additive among screened oxides. BNL has 91% of the theoretical capacity of Li metal. In full cells with BNL anode, LiFePO4 could deliver capacity of 90 mAh g-1 at 10C, an order of magnitude higher than that in full cells with Li foil anode. This strategy is expected to pave the way for fracture-resistant LMAs in high-rate cycling with maximum capacity 
650 4 |a Journal Article 
650 4 |a Li metal anodes 
650 4 |a bulk nanostructured materials 
650 4 |a fracture-resistant 
650 4 |a maximum capacity 
650 4 |a rate capability 
700 1 |a Deng, Lijun  |e verfasserin  |4 aut 
700 1 |a Guo, Wenqing  |e verfasserin  |4 aut 
700 1 |a Zhang, Chanyuan  |e verfasserin  |4 aut 
700 1 |a Liu, Xingjiang  |e verfasserin  |4 aut 
700 1 |a Luo, Jiayan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 15 vom: 02. Apr., Seite e1807585  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:15  |g day:02  |g month:04  |g pages:e1807585 
856 4 0 |u http://dx.doi.org/10.1002/adma.201807585  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 15  |b 02  |c 04  |h e1807585