|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM294278907 |
003 |
DE-627 |
005 |
20250224221808.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201805867
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0980.xml
|
035 |
|
|
|a (DE-627)NLM294278907
|
035 |
|
|
|a (NLM)30803072
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Kezhong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High-Performance Graphene-Fiber-Based Neural Recording Microelectrodes
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Fabrication of flexible and free-standing graphene-fiber- (GF-) based microelectrode arrays with a thin platinum coating, acting as a current collector, results in a structure with low impedance, high surface area, and excellent electrochemical properties. This modification results in a strong synergistic effect between these two constituents leading to a robust and superior hybrid material with better performance than either graphene electrodes or Pt electrodes. The low impedance and porous structure of the GF results in an unrivalled charge injection capacity of 10.34 mC cm-2 with the ability to record and detect neuronal activity. Furthermore, the thin Pt layer transfers the collected signals along the microelectrode efficiently. In vivo studies show that microelectrodes implanted in the rat cerebral cortex can detect neuronal activity with remarkably high signal-to-noise ratio (SNR) of 9.2 dB in an area as small as an individual neuron
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a brain-machine interface
|
650 |
|
4 |
|a graphene fiber
|
650 |
|
4 |
|a neural interface
|
650 |
|
4 |
|a neural stimulation and recording
|
650 |
|
4 |
|a soft neural microelectrode
|
700 |
1 |
|
|a Frewin, Christopher L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Esrafilzadeh, Dorna
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Changchun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Caiyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pancrazio, Joseph J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Romero-Ortega, Mario
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jalili, Rouhollah
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wallace, Gordon
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 15 vom: 02. Apr., Seite e1805867
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:15
|g day:02
|g month:04
|g pages:e1805867
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201805867
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 15
|b 02
|c 04
|h e1805867
|