Discerning Feature Supported Encoder for Image Representation

Inspired by the recent successes of deep architecture, the auto-encoder and its variants have been intensively explored on image clustering and classification tasks by learning effective feature representations. Conventional auto-encoder attempts to uncover the data's intrinsic structure, by co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 8 vom: 22. Aug., Seite 3728-3738
1. Verfasser: Wang, Shuyang (VerfasserIn)
Weitere Verfasser: Ding, Zhengming, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM294276807
003 DE-627
005 20231225081131.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2900646  |2 doi 
028 5 2 |a pubmed24n0980.xml 
035 |a (DE-627)NLM294276807 
035 |a (NLM)30802860 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shuyang  |e verfasserin  |4 aut 
245 1 0 |a Discerning Feature Supported Encoder for Image Representation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.06.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Inspired by the recent successes of deep architecture, the auto-encoder and its variants have been intensively explored on image clustering and classification tasks by learning effective feature representations. Conventional auto-encoder attempts to uncover the data's intrinsic structure, by constraining the output to be as much identical to the input as possible, which denotes that the hidden representation could faithfully reconstruct the input data. One issue that arises, however, is that such representations might not be optimized for specific tasks, e.g., image classification and clustering, since it compresses not only the discriminative information but also a lot of redundant or even noise within data. In other words, not all hidden units would benefit the specific tasks, while partial units are mainly used to represent the task-irrelevant patterns. In this paper, a general framework named discerning feature supported encoder (DFSE) is proposed, which integrates the auto-encoder and feature selection together into a unified model. Specifically, the feature selection is adapted to learned hidden-layer features to capture the task-relevant ones from the task-irrelevant ones. Meanwhile, the selected hidden units could in turn encode more discriminability only on the selected task-relevant units. To this end, our proposed algorithm can generate more effective image representation by distinguishing the task-relevant features from the task-irrelevant ones. Two scenarios of the experiments on image classification and clustering are conducted to evaluate our algorithm. The experiments on several benchmarks demonstrate that our method can achieve better performance over the state-of-the-art approaches in two scenarios 
650 4 |a Journal Article 
700 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 8 vom: 22. Aug., Seite 3728-3738  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:8  |g day:22  |g month:08  |g pages:3728-3738 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2900646  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 8  |b 22  |c 08  |h 3728-3738