TextField : Learning a Deep Direction Field for Irregular Scene Text Detection

Scene text detection is an important step in the scene text reading system. The main challenges lie in significantly varied sizes and aspect ratios, arbitrary orientations, and shapes. Driven by the recent progress in deep learning, impressive performances have been achieved for multi-oriented text...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 22. Nov., Seite 5566-5579
1. Verfasser: Xu, Yongchao (VerfasserIn)
Weitere Verfasser: Wang, Yukang, Zhou, Wei, Wang, Yongpan, Yang, Zhibo, Bai, Xiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM294276793
003 DE-627
005 20231225081131.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2900589  |2 doi 
028 5 2 |a pubmed24n0980.xml 
035 |a (DE-627)NLM294276793 
035 |a (NLM)30802859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yongchao  |e verfasserin  |4 aut 
245 1 0 |a TextField  |b Learning a Deep Direction Field for Irregular Scene Text Detection 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scene text detection is an important step in the scene text reading system. The main challenges lie in significantly varied sizes and aspect ratios, arbitrary orientations, and shapes. Driven by the recent progress in deep learning, impressive performances have been achieved for multi-oriented text detection. Yet, the performance drops dramatically in detecting the curved texts due to the limited text representation (e.g., horizontal bounding boxes, rotated rectangles, or quadrilaterals). It is of great interest to detect the curved texts, which are actually very common in natural scenes. In this paper, we present a novel text detector named TextField for detecting irregular scene texts. Specifically, we learn a direction field pointing away from the nearest text boundary to each text point. This direction field is represented by an image of 2D vectors and learned via a fully convolutional neural network. It encodes both binary text mask and direction information used to separate adjacent text instances, which is challenging for the classical segmentation-based approaches. Based on the learned direction field, we apply a simple yet effective morphological-based post-processing to achieve the final detection. The experimental results show that the proposed TextField outperforms the state-of-the-art methods by a large margin (28% and 8%) on two curved text datasets: Total-Text and SCUT-CTW1500, respectively; TextField also achieves very competitive performance on multi-oriented datasets: ICDAR 2015 and MSRA-TD500. Furthermore, TextField is robust in generalizing unseen datasets 
650 4 |a Journal Article 
700 1 |a Wang, Yukang  |e verfasserin  |4 aut 
700 1 |a Zhou, Wei  |e verfasserin  |4 aut 
700 1 |a Wang, Yongpan  |e verfasserin  |4 aut 
700 1 |a Yang, Zhibo  |e verfasserin  |4 aut 
700 1 |a Bai, Xiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 11 vom: 22. Nov., Seite 5566-5579  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:11  |g day:22  |g month:11  |g pages:5566-5579 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2900589  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 11  |b 22  |c 11  |h 5566-5579