Effect of the Air/Water Interfacial Properties of Amine Derivatives on the in Situ Fabrication of Microsized Gold Sheets
Development of new methods for producing large-area nanocrystals with specific shapes is crucial for advancements in various fields. In this study, submillimeter-sized sheet-structured gold crystals with nanoscale thicknesses were fabricated by chemical reduction of HAuCl4 in the presence of long-ch...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 11 vom: 19. März, Seite 4029-4036 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Development of new methods for producing large-area nanocrystals with specific shapes is crucial for advancements in various fields. In this study, submillimeter-sized sheet-structured gold crystals with nanoscale thicknesses were fabricated by chemical reduction of HAuCl4 in the presence of long-chain amidoamine-derived surfactants (C nAOH; n = 12, 14, 16, or 18) in aqueous solutions. Using the C18AOH system at 30 °C, large-area sheet-structured crystals with widths of ∼100 μm and thicknesses of 30 nm were effectively obtained at the air/water interface. The crystal size depended on the temperature and the alkyl-chain length of the surfactant. An investigation of the relationship between the crystal growth and the interfacial properties of C nAOH revealed that large-area crystals were obtained when densely packed molecular layers of long-chain C nAOH were formed at the air/water interface. The interfacial molecular layer of C18AOH showed most effective soft-templating effect and contributed in promoting the growth of sheet-structured gold crystals |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b04049 |