Scalable Zero-Shot Learning via Binary Visual-Semantic Embeddings

Zero-shot learning aims to classify visual instances from unseen classes in the absence of training examples. This is typically achieved by directly mapping visual features to a semantic embedding space of classes (e.g., attributes or word vectors), where the similarity between the two modalities ca...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 18. Feb.
1. Verfasser: Shen, Fumin (VerfasserIn)
Weitere Verfasser: Zhou, Xiang, Yu, Jun, Yang, Yang, Liu, Li, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM294191372
003 DE-627
005 20240229162134.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2899987  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM294191372 
035 |a (NLM)30794175 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Fumin  |e verfasserin  |4 aut 
245 1 0 |a Scalable Zero-Shot Learning via Binary Visual-Semantic Embeddings 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Zero-shot learning aims to classify visual instances from unseen classes in the absence of training examples. This is typically achieved by directly mapping visual features to a semantic embedding space of classes (e.g., attributes or word vectors), where the similarity between the two modalities can be readily measured. However, the semantic space may not be reliable for recognition due to the noisy class embeddings or visual bias problem. In this work, we propose a novel Binary embedding based Zero-Shot Learning (BZSL) method, which recognizes visual instances from unseen classes through an intermediate discriminative Hamming space. Specifically, BZSL jointly learns two binary coding functions to encode both visual instances and class embeddings into the Hamming space, which well alleviates the visual-semantic bias problem. As a desiring property, classifying an unseen instance thereby can be efficiently done by retrieving its nearest-class codes with minimal Hamming distance. During training, by introducing two auxiliary variables for the coding functions, we formulate an equivalent correlation maximization problem, which admits an analytical solution. The resulting algorithm thus enjoys both highly efficient training and scalable novel class inferring. Extensive experiments on four benchmark datasets, including the full ImageNet Fall 2011 dataset with over 20K unseen classes, demonstrate the superiority of our method on the zero-shot learning task. Particularly, we show that increasing the binary embedding dimension can inevitably improve the recognition accuracy 
650 4 |a Journal Article 
700 1 |a Zhou, Xiang  |e verfasserin  |4 aut 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
700 1 |a Yang, Yang  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Shen, Heng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 18. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:18  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2899987  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 18  |c 02