A Logistic Regression Model for Predicting Risk of White Mold Incidence on Dry Bean in North Dakota

White mold, caused by Sclerotinia sclerotiorum, is the most important disease affecting dry bean production in North Dakota. This disease currently is managed mainly through fungicides applied during the flowering stage. A disease-forecasting model was developed to help growers with their decision t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 92(2008), 1 vom: 19. Jan., Seite 42-46
1. Verfasser: Harikrishnan, R (VerfasserIn)
Weitere Verfasser: Río, L E Del
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article model validation
LEADER 01000naa a22002652 4500
001 NLM294114947
003 DE-627
005 20231225080808.0
007 cr uuu---uuuuu
008 231225s2008 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-92-1-0042  |2 doi 
028 5 2 |a pubmed24n0980.xml 
035 |a (DE-627)NLM294114947 
035 |a (NLM)30786357 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Harikrishnan, R  |e verfasserin  |4 aut 
245 1 2 |a A Logistic Regression Model for Predicting Risk of White Mold Incidence on Dry Bean in North Dakota 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a White mold, caused by Sclerotinia sclerotiorum, is the most important disease affecting dry bean production in North Dakota. This disease currently is managed mainly through fungicides applied during the flowering stage. A disease-forecasting model was developed to help growers with their decision to apply these fungicides. The model was built using weather variables collected during eight consecutive half-month periods between 1 May and 31 August 2003 to 2005 and white mold incidence data obtained from 150 fields. The model was produced using logistic regression analysis, and includes total rainfall, average minimum temperature, and number of rainy days in the first half of June, July, and August, respectively, as predictors and explained 85% of the variability. The model was validated using an independent disease data set collected from 100 fields during the same years. The model exhibited high true positive ratio (0.79) and very high accuracy (0.91) between observed and predicted probabilities of white mold incidence. Results from this study suggest that in-season macro-weather variables could be used to predict the risk of white mold, which in-turn could help growers make better-informed decisions on whether or not to apply fungicides for white mold control 
650 4 |a Journal Article 
650 4 |a model validation 
700 1 |a Río, L E Del  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 92(2008), 1 vom: 19. Jan., Seite 42-46  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:92  |g year:2008  |g number:1  |g day:19  |g month:01  |g pages:42-46 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-92-1-0042  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 92  |j 2008  |e 1  |b 19  |c 01  |h 42-46