Relationship Between the Inoculum Density of Verticillium dahliae and the Progress of Verticillium Wilt of Olive

An experiment was conducted in microplots which were artificially infested with a defoliating isolate of Verticillium dahliae using seven different treatments of inoculum densities ranging from 0 to 10 microsclerotia per gram of soil (ppg). The experiment was conducted in Andalucía (southern Spain),...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 91(2007), 11 vom: 01. Nov., Seite 1372-1378
1. Verfasser: López-Escudero, F J (VerfasserIn)
Weitere Verfasser: Blanco-López, M A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:An experiment was conducted in microplots which were artificially infested with a defoliating isolate of Verticillium dahliae using seven different treatments of inoculum densities ranging from 0 to 10 microsclerotia per gram of soil (ppg). The experiment was conducted in Andalucía (southern Spain), and the susceptible Spanish olive cv. Picual was used to determine the relationship between pathogen inoculum density and the progress of Verticillium wilt of olive (VWO). The inoculum, produced on a sodium pectate cellophane medium, was found to efficiently infect olive trees. Symptoms first appeared 30 weeks after the trees were transplanted into infested soil. Periods of increasing disease incidence in the following seasons and years were mainly during spring and autumn, particularly in the second year after planting. Olive trees exhibited a high susceptibility to the defoliating pathotype of the pathogen, even at very low inoculum levels; in fact, diseased plants were encountered throughout the experiment regardless of the inoculum density treatment. Inoculum densities greater than 3 ppg in the soil resulted in final disease incidence greater than 50% for the trees after 2.5 years. Therefore, these inoculum densities must be considered very high for olive trees. There were no differences in final disease incidence, mean symptom severity, or area under the disease progress curve between plots infested with 10 or 3.33 ppg, whereas other treatments exhibited lower values for each of these disease parameters. The temporal variations of disease incidence and severity were highly correlated for the higher inoculum density treatments, with r2 values ranging from 0.92 to 0.84 for disease incidence and from 0.93 to 0.88 for severity. However, r2 was slightly lower for the treatments involving lower inoculum densities of the pathogen in microplots. The slopes of the linear regression curves were statistically different for nearly all the inoculum density treatments. Positive correlation was found between the initial inoculum density and final disease incidence values after the study period that was accurately explained by mathematical models. The results suggest that susceptible olive cultivars should not be planted in soils infested with virulent defoliating pathotypes of V. dahliae. Results also clarify that inoculum density levels obtained from field soil analyses can be used for establishing a risk prediction system with a view to controlling VWO in olive tree plantations
Beschreibung:Date Revised 20.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0191-2917
DOI:10.1094/PDIS-91-11-1372