Phylogenetic and biogeographic controls of plant nighttime stomatal conductance
© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 222(2019), 4 vom: 15. Juni, Seite 1778-1788 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. adaption biogeographic ecosystem flux gas exchange phylogenetic stomata transpiration |
Zusammenfassung: | © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. The widely documented phenomenon of nighttime stomatal conductance gsn could lead to substantial water loss with no carbon gain, and thus it remains unclear whether nighttime stomatal conductance confers a functional advantage. Given that studies of gsn have focused on controlled environments or small numbers of species in natural environments, a broad phylogenetic and biogeographic context could provide insights into potential adaptive benefits of gsn . We measured gsn on a diverse suite of species (n = 73) across various functional groups and climates-of-origin in a common garden to study the phylogenetic and biogeographic/climatic controls on gsn and further assessed the degree to which gsn co-varied with leaf functional traits and daytime gas-exchange rates. Closely related species were more similar in gsn than expected by chance. Herbaceous species had higher gsn than woody species. Species that typically grow in climates with lower mean annual precipitation - where the fitness cost of water loss should be the highest - generally had higher gsn . Our results reveal the highest gsn rates in species from environments where neighboring plants compete most strongly for water, suggesting a possible role for the competitive advantage of gsn |
---|---|
Beschreibung: | Date Completed 27.02.2020 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.15755 |