Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 31 vom: 15. Aug., Seite e1805513
1. Verfasser: Mascaretti, Luca (VerfasserIn)
Weitere Verfasser: Dutta, Aveek, Kment, Štěpán, Shalaev, Vladimir M, Boltasseva, Alexandra, Zbořil, Radek, Naldoni, Alberto
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review hydrogen production photoelectrochemistry photonic nanostructures surface plasmons water splitting
LEADER 01000naa a22002652 4500
001 NLM293991456
003 DE-627
005 20231225080525.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201805513  |2 doi 
028 5 2 |a pubmed24n0979.xml 
035 |a (DE-627)NLM293991456 
035 |a (NLM)30773753 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mascaretti, Luca  |e verfasserin  |4 aut 
245 1 0 |a Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Photoelectrochemical (PEC) water splitting is a promising approach for producing hydrogen without greenhouse gas emissions. Despite decades of unceasing efforts, the efficiency of PEC devices based on earth-abundant semiconductors is still limited by their low light absorption, low charge mobility, high charge-carrier recombination, and reduced diffusion length. Plasmonics has recently emerged as an effective approach for overcoming these limitations, although a full understanding of the involved physical mechanisms remains elusive. Here, the reported plasmonic effects are outlined, such as resonant energy transfer, scattering, hot electron injection, guided modes, and photonic effects, as well as the less investigated catalytic and thermal effects used in PEC water splitting. In each section, the fundamentals are reviewed and the most representative examples are discussed, illustrating possible future developments for achieving improved efficiency of plasmonic photoelectrodes 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a hydrogen production 
650 4 |a photoelectrochemistry 
650 4 |a photonic nanostructures 
650 4 |a surface plasmons 
650 4 |a water splitting 
700 1 |a Dutta, Aveek  |e verfasserin  |4 aut 
700 1 |a Kment, Štěpán  |e verfasserin  |4 aut 
700 1 |a Shalaev, Vladimir M  |e verfasserin  |4 aut 
700 1 |a Boltasseva, Alexandra  |e verfasserin  |4 aut 
700 1 |a Zbořil, Radek  |e verfasserin  |4 aut 
700 1 |a Naldoni, Alberto  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 31 vom: 15. Aug., Seite e1805513  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:31  |g day:15  |g month:08  |g pages:e1805513 
856 4 0 |u http://dx.doi.org/10.1002/adma.201805513  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 31  |b 15  |c 08  |h e1805513