Resistance to QoI Fungicides in Ascochyta rabiei from Chickpea in the Northern Great Plains

Ascochyta blight, caused by Ascochyta rabiei (teleomorph: Didymella rabiei), is an important fungal disease of chickpea (Cicer arietinum). A monitoring program was established in 2005 to determine the sensitivity of A. rabiei isolates to the QoI (strobilurin) fungicides azoxystrobin and pyraclostrob...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 93(2009), 5 vom: 11. Mai, Seite 528-536
1. Verfasser: Wise, K A (VerfasserIn)
Weitere Verfasser: Bradley, C A, Pasche, J S, Gudmestad, N C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Ascochyta blight, caused by Ascochyta rabiei (teleomorph: Didymella rabiei), is an important fungal disease of chickpea (Cicer arietinum). A monitoring program was established in 2005 to determine the sensitivity of A. rabiei isolates to the QoI (strobilurin) fungicides azoxystrobin and pyraclostrobin. A total of 403 isolates of A. rabiei from the Northern Great Plains and the Pacific Northwest were tested. Ninety-eight isolates collected between 2005 and 2007 were tested using an in vitro spore germination assay to determine the effective fungicide concentration at which 50% of conidial germination was inhibited (EC50) for each isolate-fungicide combination. A discriminatory dose of 1 μg/ml azoxystrobin was established and used to test 305 isolates from 2006 and 2007 for in vitro QoI fungicide sensitivity. Sixty-five percent of isolates collected from North Dakota in 2005, 2006, and 2007 and from Montana in 2007 were found to exhibit a mean 100-fold decrease in sensitivity to both azoxystrobin and pyraclostrobin when compared to sensitive isolates, and were considered to be resistant to azoxystrobin and pyraclostrobin. Under greenhouse conditions, QoI-resistant isolates of A. rabiei caused significantly higher amounts of disease than sensitive isolates on azoxystrobin- or pyraclostrobin-amended plants. These results suggest that disease control may be inadequate at locations where resistant isolates are present
Beschreibung:Date Revised 08.04.2022
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0191-2917
DOI:10.1094/PDIS-93-5-0528