Modeling Point Spread Function in Fluorescence Microscopy With a Sparse Gaussian Mixture : Tradeoff Between Accuracy and Efficiency

Deblurring is a fundamental inverse problem in bioimaging. It requires modeling the point spread function (PSF), which captures the optical distortions entailed by the image formation process. The PSF limits the spatial resolution attainable for a given microscope. However, recent applications requi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 8 vom: 11. Aug., Seite 3688-3702
1. Verfasser: Samuylov, Denis K (VerfasserIn)
Weitere Verfasser: Purwar, Prateek, Szekely, Gabor, Paul, Gregory
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM293881294
003 DE-627
005 20231225080258.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2898843  |2 doi 
028 5 2 |a pubmed24n0979.xml 
035 |a (DE-627)NLM293881294 
035 |a (NLM)30762548 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Samuylov, Denis K  |e verfasserin  |4 aut 
245 1 0 |a Modeling Point Spread Function in Fluorescence Microscopy With a Sparse Gaussian Mixture  |b Tradeoff Between Accuracy and Efficiency 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.01.2020 
500 |a Date Revised 02.01.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Deblurring is a fundamental inverse problem in bioimaging. It requires modeling the point spread function (PSF), which captures the optical distortions entailed by the image formation process. The PSF limits the spatial resolution attainable for a given microscope. However, recent applications require a higher resolution and have prompted the development of super-resolution techniques to achieve sub-pixel accuracy. This requirement restricts the class of suitable PSF models to analog ones. In addition, deblurring is computationally intensive, hence further requiring computationally efficient models. A custom candidate fitting both the requirements is the Gaussian model. However, this model cannot capture the rich tail structures found in both the theoretical and empirical PSFs. In this paper, we aim at improving the reconstruction accuracy beyond the Gaussian model, while preserving its computational efficiency. We introduce a new class of analog PSF models based on the Gaussian mixtures. The number of Gaussian kernels controls both the modeling accuracy and the computational efficiency of the model: the lower the number of kernels, the lower the accuracy and the higher the efficiency. To explore the accuracy-efficiency tradeoff, we propose a variational formulation of the PSF calibration problem, where a convex sparsity-inducing penalty on the number of Gaussian kernels allows trading accuracy for efficiency. We derive an efficient algorithm based on a fully split formulation of alternating split Bregman. We assess our framework on synthetic and real data, and demonstrate a better reconstruction accuracy in both geometry and photometry in point source localization-a fundamental inverse problem in fluorescence microscopy 
650 4 |a Journal Article 
700 1 |a Purwar, Prateek  |e verfasserin  |4 aut 
700 1 |a Szekely, Gabor  |e verfasserin  |4 aut 
700 1 |a Paul, Gregory  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 8 vom: 11. Aug., Seite 3688-3702  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:8  |g day:11  |g month:08  |g pages:3688-3702 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2898843  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 8  |b 11  |c 08  |h 3688-3702