|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM29388112X |
003 |
DE-627 |
005 |
20231225080258.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2019.2898859
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0979.xml
|
035 |
|
|
|a (DE-627)NLM29388112X
|
035 |
|
|
|a (NLM)30762530
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tulsiani, Shubham
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multi-View Supervision for Single-View Reconstruction via Differentiable Ray Consistency
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We study the notion of consistency between a 3D shape and a 2D observation and propose a differentiable formulation which allows computing gradients of the 3D shape given an observation from an arbitrary view. We do so by reformulating view consistency using a differentiable ray consistency (DRC) term. We show that this formulation can be incorporated in a learning framework to leverage different types of multi-view observations e.g., foreground masks, depth, color images, semantics etc. as supervision for learning single-view 3D prediction. We present empirical analysis of our technique in a controlled setting. We also show that this approach allows us to improve over existing techniques for single-view reconstruction of objects from the PASCAL VOC dataset
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhou, Tinghui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Efros, Alexei A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Malik, Jitendra
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 12 vom: 14. Dez., Seite 8754-8765
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:12
|g day:14
|g month:12
|g pages:8754-8765
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2019.2898859
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 12
|b 14
|c 12
|h 8754-8765
|