Multi-View Supervision for Single-View Reconstruction via Differentiable Ray Consistency

We study the notion of consistency between a 3D shape and a 2D observation and propose a differentiable formulation which allows computing gradients of the 3D shape given an observation from an arbitrary view. We do so by reformulating view consistency using a differentiable ray consistency (DRC) te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 14. Dez., Seite 8754-8765
1. Verfasser: Tulsiani, Shubham (VerfasserIn)
Weitere Verfasser: Zhou, Tinghui, Efros, Alexei A, Malik, Jitendra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM29388112X
003 DE-627
005 20231225080258.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2898859  |2 doi 
028 5 2 |a pubmed24n0979.xml 
035 |a (DE-627)NLM29388112X 
035 |a (NLM)30762530 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tulsiani, Shubham  |e verfasserin  |4 aut 
245 1 0 |a Multi-View Supervision for Single-View Reconstruction via Differentiable Ray Consistency 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We study the notion of consistency between a 3D shape and a 2D observation and propose a differentiable formulation which allows computing gradients of the 3D shape given an observation from an arbitrary view. We do so by reformulating view consistency using a differentiable ray consistency (DRC) term. We show that this formulation can be incorporated in a learning framework to leverage different types of multi-view observations e.g., foreground masks, depth, color images, semantics etc. as supervision for learning single-view 3D prediction. We present empirical analysis of our technique in a controlled setting. We also show that this approach allows us to improve over existing techniques for single-view reconstruction of objects from the PASCAL VOC dataset 
650 4 |a Journal Article 
700 1 |a Zhou, Tinghui  |e verfasserin  |4 aut 
700 1 |a Efros, Alexei A  |e verfasserin  |4 aut 
700 1 |a Malik, Jitendra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 14. Dez., Seite 8754-8765  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:14  |g month:12  |g pages:8754-8765 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2898859  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 14  |c 12  |h 8754-8765