Skeleton-Based Online Action Prediction Using Scale Selection Network

Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 6 vom: 14. Juni, Seite 1453-1467
1. Verfasser: Liu, Jun (VerfasserIn)
Weitere Verfasser: Shahroudy, Amir, Wang, Gang, Duan, Ling-Yu, Kot, Alex C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM293881111
003 DE-627
005 20231225080258.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2898954  |2 doi 
028 5 2 |a pubmed24n0979.xml 
035 |a (DE-627)NLM293881111 
035 |a (NLM)30762531 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Jun  |e verfasserin  |4 aut 
245 1 0 |a Skeleton-Based Online Action Prediction Using Scale Selection Network 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.05.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the temporal axis. Since there are significant temporal scale variations in the observed part of the ongoing action at different time steps, a novel window scale selection method is proposed to make our network focus on the performed part of the ongoing action and try to suppress the possible incoming interference from the previous actions at each step. An activation sharing scheme is also proposed to handle the overlapping computations among the adjacent time steps, which enables our framework to run more efficiently. Moreover, to enhance the performance of our framework for action prediction with the skeletal input data, a hierarchy of dilated tree convolutions are also designed to learn the multi-level structured semantic representations over the skeleton joints at each frame. Our proposed approach is evaluated on four challenging datasets. The extensive experiments demonstrate the effectiveness of our method for skeleton-based online action prediction 
650 4 |a Journal Article 
700 1 |a Shahroudy, Amir  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Duan, Ling-Yu  |e verfasserin  |4 aut 
700 1 |a Kot, Alex C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 6 vom: 14. Juni, Seite 1453-1467  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:6  |g day:14  |g month:06  |g pages:1453-1467 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2898954  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 6  |b 14  |c 06  |h 1453-1467