Synthetic Butterfly Scale Surfaces with Compliance-Tailored Anisotropic Drop Adhesion

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 14 vom: 28. Apr., Seite e1807686
1. Verfasser: Zhao, Hangbo (VerfasserIn)
Weitere Verfasser: Park, Sei Jin, Solomon, Brian R, Kim, Sanha, Soto, Dan, Paxson, Adam T, Varanasi, Kripa K, Hart, A John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article adhesion manufacturing nanotube surface wetting Nanotubes, Carbon
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Many natural surfaces such as butterfly wings, beetles' backs, and rice leaves exhibit anisotropic liquid adhesion; this is of fundamental interest and is important to applications including self-cleaning surfaces, microfluidics, and phase change energy conversion. Researchers have sought to mimic the anisotropic adhesion of butterfly wings using rigid surface textures, though natural butterfly scales are sufficiently compliant to be deflected by capillary forces exerted by drops. Here, inspired by the flexible scales of the Morpho aega butterfly wing, synthetic surfaces coated with flexible carbon nanotube (CNT) microscales with anisotropic drop adhesion properties are fabricated. The curved CNT scales are fabricated by a strain-engineered chemical vapor deposition technique, giving ≈5000 scales of ≈10 µm thickness in a 1 cm2 area. Using various designed CNT scale arrays, it is demonstrated that the anisotropy of drop roll-off angle is influenced by the geometry, compliance, and hydrophobicity of the scales; and a maximum roll-off anisotropy of 6.2° is achieved. These findings are supported by a model that relates the adhesion anisotropy to the scale geometry, compliance, and wettability. The electrical conductivity and mechanical robustness of the CNTs, and the ability to fabricate complex multidirectional patterns, suggest further opportunities to create engineered synthetic scale surfaces
Beschreibung:Date Completed 18.07.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201807686