In Situ Back-Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 14 vom: 20. Apr., Seite e1807435
1. Verfasser: Tan, Furui (VerfasserIn)
Weitere Verfasser: Tan, Hairen, Saidaminov, Makhsud I, Wei, Mingyang, Liu, Mengxia, Mei, Anyi, Li, Peicheng, Zhang, Bowen, Tan, Chih-Shan, Gong, Xiwen, Zhao, Yongbiao, Kirmani, Ahmad R, Huang, Ziru, Fan, James Z, Quintero-Bermudez, Rafael, Kim, Junghwan, Zhao, Yicheng, Voznyy, Oleksandr, Gao, Yueyue, Zhang, Feng, Richter, Lee J, Lu, Zheng-Hong, Zhang, Weifeng, Sargent, Edward H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article band alignment passivation perovskite solar cells semiconducting polymers
LEADER 01000naa a22002652 4500
001 NLM293666539
003 DE-627
005 20231225075819.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201807435  |2 doi 
028 5 2 |a pubmed24n0978.xml 
035 |a (DE-627)NLM293666539 
035 |a (NLM)30740780 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, Furui  |e verfasserin  |4 aut 
245 1 0 |a In Situ Back-Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2019 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Organic-inorganic hybrid perovskite solar cells (PSCs) have seen a rapid rise in power conversion efficiencies in recent years; however, they still suffer from interfacial recombination and charge extraction losses at interfaces between the perovskite absorber and the charge-transport layers. Here, in situ back-contact passivation (BCP) that reduces interfacial and extraction losses between the perovskite absorber and the hole transport layer (HTL) is reported. A thin layer of nondoped semiconducting polymer at the perovskite/HTL interface is introduced and it is shown that the use of the semiconductor polymer permits-in contrast with previously studied insulator-based passivants-the use of a relatively thick passivating layer. It is shown that a flat-band alignment between the perovskite and polymer passivation layers achieves a high photovoltage and fill factor: the resultant BCP enables a photovoltage of 1.15 V and a fill factor of 83% in 1.53 eV bandgap PSCs, leading to an efficiency of 21.6% in planar solar cells 
650 4 |a Journal Article 
650 4 |a band alignment 
650 4 |a passivation 
650 4 |a perovskite solar cells 
650 4 |a semiconducting polymers 
700 1 |a Tan, Hairen  |e verfasserin  |4 aut 
700 1 |a Saidaminov, Makhsud I  |e verfasserin  |4 aut 
700 1 |a Wei, Mingyang  |e verfasserin  |4 aut 
700 1 |a Liu, Mengxia  |e verfasserin  |4 aut 
700 1 |a Mei, Anyi  |e verfasserin  |4 aut 
700 1 |a Li, Peicheng  |e verfasserin  |4 aut 
700 1 |a Zhang, Bowen  |e verfasserin  |4 aut 
700 1 |a Tan, Chih-Shan  |e verfasserin  |4 aut 
700 1 |a Gong, Xiwen  |e verfasserin  |4 aut 
700 1 |a Zhao, Yongbiao  |e verfasserin  |4 aut 
700 1 |a Kirmani, Ahmad R  |e verfasserin  |4 aut 
700 1 |a Huang, Ziru  |e verfasserin  |4 aut 
700 1 |a Fan, James Z  |e verfasserin  |4 aut 
700 1 |a Quintero-Bermudez, Rafael  |e verfasserin  |4 aut 
700 1 |a Kim, Junghwan  |e verfasserin  |4 aut 
700 1 |a Zhao, Yicheng  |e verfasserin  |4 aut 
700 1 |a Voznyy, Oleksandr  |e verfasserin  |4 aut 
700 1 |a Gao, Yueyue  |e verfasserin  |4 aut 
700 1 |a Zhang, Feng  |e verfasserin  |4 aut 
700 1 |a Richter, Lee J  |e verfasserin  |4 aut 
700 1 |a Lu, Zheng-Hong  |e verfasserin  |4 aut 
700 1 |a Zhang, Weifeng  |e verfasserin  |4 aut 
700 1 |a Sargent, Edward H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 14 vom: 20. Apr., Seite e1807435  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:14  |g day:20  |g month:04  |g pages:e1807435 
856 4 0 |u http://dx.doi.org/10.1002/adma.201807435  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 14  |b 20  |c 04  |h e1807435