First Report of Stem Blight Caused by Calonectria colhounii (Anamorph Cylindrocladium colhounii) on Greenhouse-Grown Blueberries in the United States

Necrotic stems and leaves were observed on 2- to 4-month-old, rooted microshoot plants (Vaccinium corymbosum L. 'Liberty' and 'Bluecrop', V. angustifolium Aiton 'Putte', and V. corymbosum × V. angustifolium 'Polaris') in a Michigan greenhouse in 2008 and 2009....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 95(2011), 9 vom: 14. Sept., Seite 1187
1. Verfasser: Sadowsky, J J (VerfasserIn)
Weitere Verfasser: Miles, T D, Schilder, A M C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Necrotic stems and leaves were observed on 2- to 4-month-old, rooted microshoot plants (Vaccinium corymbosum L. 'Liberty' and 'Bluecrop', V. angustifolium Aiton 'Putte', and V. corymbosum × V. angustifolium 'Polaris') in a Michigan greenhouse in 2008 and 2009. As the disease progressed, leaves fell off and 80 to 100% of the plants died in some cases. Root rot symptoms were also observed. A fungus was isolated from stem lesions. On potato dextrose agar (PDA), cultures first appeared light tan to orange, then rusty brown and zonate with irregular margins. Chains of orange-brown chlamydospores were abundant in the medium. Macroconidiophores were penicillately branched and had a stipe extension of 220 to 275 × 2.5 μm with a narrowly clavate vesicle, 3 to 4 μm wide at the tip. Conidia were hyaline and cylindrical with rounded ends, (1-)3-septate, 48 to 73 × 5 to 7 (average 60 × 5.5) μm and were held together in parallel clusters. Perithecia were globose to subglobose, yellow, 290 to 320 μm high, and 255 to 295 μm in diameter. Ascospores were hyaline, 2- to 3-septate, guttulate, fusoid with rounded ends, slightly curved, and 30 to 88 × 5 to 7.5 (average 57 × 5.3) μm. On the basis of morphology, the fungus was identified as Calonectria colhounii Peerally (anamorph Cylindrocladium colhounii Peerally) (1,2). The internal transcribed spacer region (ITS1 and ITS2) of the ribosomal DNA and the β-tubulin gene were sequenced (GenBank Accession Nos. HQ909028 and JF826867, respectively) and compared with existing sequences using BLASTn. The ITS sequence shared 99% maximum identity with that of Ca. colhounii CBS 293.79 (GQ280565) from Java, Indonesia, and the β-tubulin sequence shared 97% maximum identity with that of Ca. colhounii CBS 114036 (DQ190560) isolated from leaf spots on Rhododendron sp. in North Carolina. The isolate was submitted to the Centraalbureau voor Schimmelcultures in the Netherlands (CBS 129628). To confirm pathogenicity, 5 ml of a conidial suspension (1 × 105/ml) were applied as a foliar spray or soil drench to four healthy 'Bluecrop' plants each in 10-cm plastic pots. Two water-sprayed and two water-drenched plants served as controls. Plants were misted intermittently for 2 days after inoculation. After 7 days at 25 ± 3°C, drench-inoculated plants developed necrotic, sporulating stem lesions at the soil line, while spray-inoculated plants showed reddish brown leaf and stem lesions. At 28 days, three drench-inoculated and one spray-inoculated plant had died, while others showed stem necrosis and wilting. No symptoms were observed on control plants. Fungal colonies reisolated from surface-disinfested symptomatic stem, leaf, and root segments appeared identical to the original isolate. Cy. colhounii was reported to cause a leaf spot on blueberry plants in nurseries in China (3), while Ca. crotalariae (Loos) D.K. Bell & Sobers (= Ca. ilicicola Boedijn & Reitsma) causes stem and root rot of blueberries in North Carolina (4). To our knowledge, this is the first report of Ca. colhounii causing a disease of blueberry in Michigan or the United States. Because of its destructive potential, this pathogen may pose a significant threat in blueberry nurseries. References: (1) P. W. Crous. Taxonomy and Pathology of Cylindrocladium (Calonectria) and Allied Genera. The American Phytopathological Society, St. Paul, MN, 2002. (2) L. Lombard et al. Stud. Mycol. 66:31, 2010. (3) Y. S. Luan et al. Plant Dis. 90:1553, 2006. (4) R. D. Milholland. Phytopathology 64:831, 1974
Beschreibung:Date Revised 20.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0191-2917
DOI:10.1094/PDIS-02-11-0117