Evaluation of Visible-Near Infrared Reflectance Spectra of Avocado Leaves as a Non-destructive Sensing Tool for Detection of Laurel Wilt

Laurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually simila...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 96(2012), 11 vom: 01. Nov., Seite 1683-1689
1. Verfasser: Sankaran, Sindhuja (VerfasserIn)
Weitere Verfasser: Ehsani, Reza, Inch, Sharon A, Ploetz, Randy C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM293535639
003 DE-627
005 20231225075528.0
007 cr uuu---uuuuu
008 231225s2012 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-01-12-0030-RE  |2 doi 
028 5 2 |a pubmed24n0978.xml 
035 |a (DE-627)NLM293535639 
035 |a (NLM)30727463 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sankaran, Sindhuja  |e verfasserin  |4 aut 
245 1 0 |a Evaluation of Visible-Near Infrared Reflectance Spectra of Avocado Leaves as a Non-destructive Sensing Tool for Detection of Laurel Wilt 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Laurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually similar to those caused by freeze damage (leaf necrosis). In this work, we performed classification studies with visible-near infrared spectra of asymptomatic and symptomatic leaves from infected plants, as well as leaves from freeze-damaged and healthy plants, both of which were non-infected. The principal component scores computed from principal component analysis were used as input features in four classifiers: linear discriminant analysis, quadratic discriminant analysis (QDA), Naïve-Bayes classifier, and bagged decision trees (BDT). Among the classifiers, QDA and BDT resulted in classification accuracies of higher than 94% when classifying asymptomatic leaves from infected plants. All of the classifiers were able to discriminate symptomatic-infected leaves from freeze-damaged leaves. However, the false negatives mainly resulted from asymptomatic-infected leaves being classified as healthy. Analyses of average vegetation indices of freeze-damaged, healthy (non-infected), asymptomatic-infected, and symptomatic-infected leaves indicated that the normalized difference vegetation index and the simple ratio index were statistically different 
650 4 |a Journal Article 
700 1 |a Ehsani, Reza  |e verfasserin  |4 aut 
700 1 |a Inch, Sharon A  |e verfasserin  |4 aut 
700 1 |a Ploetz, Randy C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 96(2012), 11 vom: 01. Nov., Seite 1683-1689  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:96  |g year:2012  |g number:11  |g day:01  |g month:11  |g pages:1683-1689 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-01-12-0030-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 96  |j 2012  |e 11  |b 01  |c 11  |h 1683-1689