Robust gene-environment interaction analysis using penalized trimmed regression
In biomedical and epidemiological studies, gene-environment (G-E) interactions have been shown to importantly contribute to the etiology and progression of many complex diseases. Most existing approaches for identifying G-E interactions are limited by the lack of robustness against outliers/contamin...
Veröffentlicht in: | Journal of statistical computation and simulation. - 1999. - 88(2018), 18 vom: 04., Seite 3502-3528 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Journal of statistical computation and simulation |
Schlagworte: | Journal Article G-E interaction Penalized selection Robustness Trimmed regression |
Online verfügbar |
Volltext |